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1. Probability review 
 
Probability space has three components: 

• Sample space 𝑍: set of all possible outcomes of the random process modeled by the 
probability space. (Eg. dice rolling: 𝑍 = {1,2, … ,6}) 

• Family 𝐹 of sets of allowable events, where each event 𝐴 is a subset of 𝑍: 𝐴 ⊆ 𝑍 (Eg. dice 

rolling: 𝐹 = {{1}, {2}, … , {6}}) 

• Probability distribution 𝐷: 𝐹 → [0,1] that satisfies the following conditions: 
o 𝐷[𝑍] = 1 
o Let 𝐸1, 𝐸2, … be any finite or countably infinite sequence of pairwise mutually disjoint 

events (𝐸𝑖 ∩ 𝐸𝑗 = ∅ for all 𝑖 ≠ 𝑗) 

𝐷 [⋃𝐸𝑖

𝑖≥1

] = ∑𝐷[𝐸𝑖]

𝑖≥1

 

(Eg. dice rolling: 𝐷({𝑖}) =
1

6
 ) 

 
Distributions and Probability: 

• We use 𝑧~𝐷 to say that event 𝑧 ∈ 𝑍 is sampled according to 𝐷 

• Given the function 𝑓: 𝑍 → {true, false}, we define the Probability of 𝑓(𝑧): 
ℙ𝑧~𝐷[𝑓(𝑧)] = 𝐷({𝑧 ∈ 𝑍: 𝑓(𝑧) = true}) 

• An event 𝐴 ⊆ 𝑍 can be expressed using a function 𝜋𝐴: 𝑍 → {true, false}. That is 
𝐴 = {𝑧 ∈ 𝑍: 𝜋𝐴(𝑧) = true} 

Where 𝜋𝐴(𝑧) = true if 𝑧 ∈ 𝐴 otherwise 𝜋𝐴(𝑧) = false. 
In this case we have ℙ[𝐴] = ℙ𝑧~𝐷[𝜋𝐴(𝑧)] = 𝐷(𝐴) 

 
Independent Events: 𝐸 and 𝐹 are independent (𝐸 ⊥ 𝐹) iif ℙ[𝐸 ∩ 𝐹] = ℙ[𝐸] ∗ ℙ[𝐹]  
𝐸1, 𝐸2, … , 𝐸𝑘 are mutually independent iff for any subset 𝐼 ⊆ [1, 𝑘], ℙ[⋂ 𝐸𝑖𝑖∈𝐼 ] = ∏ ℙ[𝐸𝑖]𝑖∈𝐼  
 
Random Variable 𝑋𝑧 on a sample space 𝑍 is a function 𝑋: 𝑧 ∈ 𝑍 → ℝ 

• Discrete random variable: codomain is finite or countable (countably infinite). 

• Continuous random variable: codomain is continuous. 
 
Description of R.V.: 

• Probability Mass Function (PMF): 𝑝𝑋(𝑥) = ℙ[𝑋 = 𝑥] 

• Cumulative Distribution Function (CDF): 𝐹𝑋(𝑥) = ℙ[𝑋 ≤ 𝑥] = ∑ 𝑝𝑋(𝑘)𝑘≤𝑥   
 

Vector Valued R.V.: 𝑿 = [
𝑋1

𝑋2
] 

• 𝑋1, 𝑋2 discrete: 𝑝𝑿(𝑥) = 𝑝𝑋1,𝑋2
(𝑥1, 𝑥2) = ℙ𝑿[𝑋1 = 𝑥1, 𝑋2 = 𝑥2] 

• 𝑋1 = 𝑥1, 𝑋2 = 𝑥2 are joint events 
 
Independence: discrete random variables 𝑋 and 𝑌 are independent (𝑋 ⊥ 𝑌) iif ℙ[(𝑋 = 𝑥) ∩
(𝑌 = 𝑦)] = ℙ[𝑋 = 𝑥] ∗ ℙ[𝑌 = 𝑦] for all values 𝑥 and 𝑦. 
Discrete random variables 𝑋1, … , 𝑋𝑘 are mutually independent iff for any subset 𝐼 ⊆ [1, 𝑘] and any 
values 𝑥𝑖 , 𝑖 ∈ 𝐼: ℙ𝑿(𝑥) = ∏ ℙ[𝑋𝑖 = 𝑥] = ∏ 𝑝𝑋𝑖

(𝑥𝑖)𝑖∈𝐼𝑖∈𝐼  
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Expectation of a discrete rv:  

• Mean: 𝑚𝑋 = 𝔼[𝑋] = ∑ 𝑥𝑝𝑋(𝑥)𝑥  
o 𝔼[𝑋1 + 𝑋2] = 𝔼[𝑋1] + 𝔼[𝑋2] 
o 𝔼[𝑔(𝑋)] = ∑ 𝑔(𝑥)𝑝𝑋(𝑥)𝑥  with 𝑔(𝑋) a function  

• Variance: 𝑉𝑎𝑟[𝑋] = 𝜎𝑋
2 = 𝔼[(𝑋 − 𝑚𝑋)2] = 𝔼[𝑋2] − 𝑚𝑋

2  
o 𝑉𝑎𝑟[𝑎𝑋 + 𝑏] = 𝑎2𝑉𝑎𝑟[𝑋] 
o 𝑉𝑎𝑟[𝑋1 + 𝑋2] = 𝑉𝑎𝑟[𝑋1] + 𝑉𝑎𝑟[𝑋2] + 2𝜎𝑋1,𝑋2

 

• k-th moment: 𝔼[𝑋𝑘] 

• Covariance 𝜎𝑋𝑖,𝑋𝑗
= 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝔼 [(𝑋𝑖 − 𝑚𝑋𝑖

) (𝑋𝑗 − 𝑚𝑋𝑗
)] 

o If 𝑋1, 𝑋2 are independent then 𝜎𝑋1,𝑋2
= 0 

o If 𝜎𝑋1,𝑋2
= 0 then 𝑉𝑎𝑟[𝑋1 + 𝑋2] = 𝑉𝑎𝑟[𝑋1] + 𝑉𝑎𝑟[𝑋2] 

For a vector: 

• Expectation: 𝔼[𝑿] = [

𝑚𝑋1

⋮
𝑚𝑋𝑛

] 

• Covariance matrix: Σ = 𝔼[(𝑿 − 𝑚𝑿)(𝑿 − 𝑚𝑿)𝑇] =

[
 
 
 
 

𝜎𝑋1

2 𝜎𝑋1,𝑋2
⋯ 𝜎𝑋1,𝑋𝑛

𝜎𝑋2,𝑋1
𝜎𝑋2

2 ⋮ 𝜎𝑋2,𝑋𝑛

⋮ ⋮ ⋱ ⋮
𝜎𝑋𝑛,𝑋1

𝜎𝑋𝑛,𝑋2
⋯ 𝜎𝑋𝑛

2
]
 
 
 
 

 

 

Conditional Probability: ℙ[𝐴|𝐵] =
ℙ[𝐴∩𝐵]

ℙ[𝐵]
. Well defined only if ℙ[𝐵] > 0 

• Bayes rule: ℙ[𝐴|𝐵] =
ℙ[𝐵|𝐴]ℙ[𝐴]

ℙ[𝐵]
 

• Law of Total Probability ℙ[𝐴] = ∑  ℙ[𝐴|𝐶𝑖]ℙ[𝐶𝑖]
𝑛
𝑖=1  where 𝐶1, … , 𝐶𝑛 partition of Ω 

 
Bernoulli rv of parameter 𝑝 ∈ [0,1]:  

• X=1 success, X=0, unsuccess, 𝑝= probability of success 

• 𝑝 = ℙ[𝑋 = 1] and ℙ[𝑋 = 0] = 1 − 𝑝 

• 𝔼[𝐵𝑒(𝑝)] = 𝑝 
• 𝑉𝑎𝑟 = 𝑝(1 − 𝑝) 

Binomial ….. 
 

Chebyshev's inequality: ℙ[|𝑋 − 𝜇| > 휀] ≤
𝜎2

2  

• ℙ[|𝑓𝑛(𝐴) − 𝑝| > 휀] ≤
𝑝(1−𝑝)

𝑛 2  

• lim
𝑛→∞

𝑓𝑛(𝐴) = 𝑝 

 

Law of Large Numbers: lim
𝑛→+∞

ℙ [|
1

𝑛
∑𝑋𝑖 − 𝜇| > 휀] = 0 

 
 

 
 
 
  



 

3 
 

2. A Formal Learning Model 
 

2.1. Formal Model 
 
Formal Model (Statistical Learning): 

• Domain set 𝑋, each domain point 𝑥 is a vector of features (called instance). 

• Label set 𝑌. Often {−1,+1} or {0,1} 

• Training data 𝑆 = ((𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚))   

o Finite sequence of 𝑚 labeled domain points 
o It’s the learner input 

• Learner’s Output ℎ: 𝑋 → 𝑌 prediction rule (hypothesis, classifier, predictor). Produced by an 
algorithm 𝐴(𝑆) 

• Data-generation model: instances are generated by some probability distribution and 
labeled according to a function. 

o 𝐷 probability distribution over 𝑋 (not known by the learner) 
o labeling function 𝑓: 𝑋 → 𝑌 (not known by the learner) 
o Each point in 𝑆 is picked by sampling 𝑥𝑖  according to 𝐷 then label it as 𝑦𝑖 = 𝑓(𝑥𝑖) 

• Measures of success: error of a classifier = probability it does not predict the correct label 
on a random data point generated by distribution 𝐷. 

o 𝐷(𝐴) = prob of observing a point 𝑥 ∈ 𝐴 ⊂ 𝑋 
o Sometimes 𝐴 is an event expressed by the function 𝜋: 𝑋 → {0,1} that is 

𝐴 = {𝑥 ∈ 𝑋: 𝜋(𝑥) = 1} 
In this case ℙ𝑥~𝐷[𝜋(𝑥)] = 𝐷(𝐴) 

o Loss (error of the prediction rule ℎ):  𝐿𝐷,𝑓(ℎ) ≝ ℙ𝑥~𝐷[ℎ(𝑥) ≠ 𝑓(𝑥)] ≝ 𝐷({𝑥: ℎ(𝑥) ≠

𝑓(𝑥)}) is the probability of randomly choosing an example 𝑥 for which ℎ(𝑥) ≠ 𝑓(𝑥) 
 
Learning process: 
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2.2. ERM (Empirical Risk Minimization) 
 
Empirical Risk Minimization 
A learning algorithm receives as input a training set 𝑆, sampled from an unknown distribution 𝐷, 
labeled by some target function 𝑓 and output a predictor ℎ𝑆: 𝑋 → 𝑌 
Its goal is to find ℎ𝑆 that minimize the generalization error 𝐿𝐷,𝑓(ℎ) = 𝐷({𝑥: ℎ(𝑥) ≠ 𝑓(𝑥)})  

But 𝐿𝐷,𝑓(ℎ) is unknown. So, we minimize the training error. 

Training error (empirical risk): 𝐿𝑆(ℎ) =
|{𝑖:ℎ(𝑥𝑖)≠𝑦𝑖,1≤𝑖≤𝑚}|

𝑚
 Fraction of times that the predictor makes 

an error on the training set. 
 
Empirical Risk Minimization with Inductive Bias 
Problem: Overfitting occurs when our hypothesis fits the training data “too well”. 
Solution: apply the ERM learning rule over a restricted set of hypotheses. (Inductive Bias) 
Hypothesis class 𝐻: a set of predictors ℎ: 𝑋 → 𝑌 chosen in advance. 
ERM𝐻 learner uses the ERM rule to choose a predictor ℎ ∈ 𝐻 

ERM𝐻(𝑆) ∈ argmin
ℎ∈𝐻

𝐿𝑆(ℎ) 

So, if 𝐻 is a finite class then ERM𝐻 will not overfit. 
Assumptions: 

• Realizability: ∃ℎ∗ ∈ 𝐻 s.t. 𝐿𝐷,𝑓(ℎ
∗) = 0. This implies that 𝐿𝑆(ℎ

∗) = 0 

Informally: the label is fully determined by the instance 𝒙 

• i.i.d.: The examples in the training set are independently and identically distributed (i.i.d.) 
according to the distribution 𝐷. That is 𝑆~𝐷𝑚 

 

2.3. (Simplied) PAC learning 
 
(Simplied) PAC learning 
Probably Approximately Correct (PAC) learning 
Since the training data comes from 𝐷: 

• we can only be approximately correct 

• we can only be probably correct 
Parameters: 

• accuracy parameter 𝜖: we are satisfied with a good ℎ𝑆: 𝐿𝐷,𝑓(ℎ𝑆) ≤ 𝜖 

• confidence parameter 𝛿: want ℎ𝑆 to be a good hypothesis with probability ≥ 1 − 𝛿 
We want 𝜖 and 𝛿 to be small. 
 
Theorem: 
LET 

• 𝐻 be a finite hypothesis class, 

• 𝛿, 𝜖 ∈ (0,1) and 

• 𝑚 = |𝑆| ≥
ln(|𝐻| 𝛿⁄ )

𝜖
∈ ℕ 

THEN: 

• ∀𝑓, and ∀𝐷, for which the realizability assumption holds, 

• with probability ≥ 1 − 𝛿 over the choice of an i.i.d. sample 𝑆 of size 𝑚, 

• we have that for every ERM hypothesis, ℎ𝑆, it holds that 𝐿𝐷,𝑓(ℎ𝑆) ≤ 𝜖 

 



 

5 
 

Explanations: 

• For a sufficiently large 𝑚, the ERM𝐻 rule over a finite hypothesis class will be probably (with 
confidence 1 − 𝛿) approximately (up to an error of 𝜖) correct. 

• With finite hypothesis class, I can always (with prob ≥ 1 − 𝛿) find a good hypothesis 

(𝐿𝐷,𝑓(ℎ𝑆) ≤ 𝜖) if I have enough data (𝑚 = |𝑆| ≥
ln(|𝐻| 𝛿⁄ )

𝜖
) 

 
Proof: (pdf 5, lec 5) 

• Let 𝑆𝑥 = {𝑥1, … , 𝑥𝑚} be the instances in the training set 𝑆 

• We want an upper bound to 𝐷𝑚({𝑆𝑥: 𝐿𝐷,𝑓(ℎ𝑆) > 𝜖}) 

• Let: 

o 𝐻𝐵 = {ℎ ∈ 𝐻: 𝐿𝐷,𝑓(ℎ) > 𝜖} (bad Hypothesis) 

o 𝑀 = {𝑆𝑥: ∃ℎ ∈ 𝐻𝐵, 𝐿𝑆(ℎ) = 0} (misleading samples) 

• Since we have the realizability assumption: 𝐿𝑆(ℎ𝑆) = 0, this implies that 𝐿𝐷,𝑓(ℎ𝑆) > 𝜖 only 

if some ℎ ∈ 𝐻𝐵 has 𝐿𝑆(ℎ) = 0. 

• That is, our training data must be in the set 𝑀: this only happens if {𝑆𝑥: 𝐿𝐷,𝑓(ℎ𝑆) > 𝜖} ≤ 𝑀 

• Different way to write 𝑀 is: 𝑀 = ⋃ {𝑆𝑥: 𝐿𝑆(ℎ) = 0}ℎ∈𝐻𝐵
  

• Therefore 𝐷𝑚({𝑆𝑥: 𝐿𝐷,𝑓(ℎ𝑆) > 𝜖}) ≤ 𝐷𝑚(𝑀) = 𝐷𝑚(⋃ {𝑆𝑥: 𝐿𝑆(ℎ) = 0}ℎ∈𝐻𝐵
) 

o ≤ ∑ 𝐷𝑚({𝑆𝑥: 𝐿𝐷,𝑓(ℎ𝑆) > 𝜖})ℎ∈𝐻𝐵
 (Union bound) (1) 

• Now let’s fix the hypothesis ℎ ∈ 𝐻𝐵: 𝐿𝑆(ℎ) = 0 IIF ∀𝑖 = 1,… ,𝑚: ℎ(𝑥𝑖) = 𝑓(𝑥𝑖) 

• Therefore, we have that 𝐷𝑚({𝑆𝑥: 𝐿𝑆(ℎ) = 0}) = 𝐷({𝑆𝑥: ∀𝑖 = 1,… ,𝑚: ℎ(𝑥𝑖) = 𝑓(𝑥𝑖)}) 
o = ∏ 𝐷({𝑥𝑖: ℎ(𝑥𝑖) = 𝑓(𝑥𝑖)})

𝑚
𝑖=1  Since those samples are iid. (2) 

• Consider 𝑖, 1 ≤ 𝑖 ≤ 𝑚:𝐷({𝑥𝑖: ℎ(𝑥𝑖) = 𝑓(𝑥𝑖)}) = 1 − 𝐷({𝑥𝑖: ℎ(𝑥𝑖) ≠ 𝑓(𝑥𝑖)}) 
o Where 𝐷({𝑥𝑖: ℎ(𝑥𝑖) ≠ 𝑓(𝑥𝑖)}) = 𝐿𝐷,𝑓(ℎ) = ℙ𝑥~𝐷[ℎ(𝑥) ≠ 𝑓(𝑥)] is the 

generalization error. 
o So, 1 − 𝐷({𝑥𝑖: ℎ(𝑥𝑖) ≠ 𝑓(𝑥𝑖)}) = 1 − 𝐿𝐷,𝑓(ℎ) ≤ 1 − 𝜖 ≤ 𝑒−𝜖 

• Combining this with (2): 𝐷𝑚({𝑆𝑥: 𝐿𝑆(ℎ) = 0}) ≤ ∏ 𝑒−𝜖𝑚
𝑖=1 = 𝑒−𝜖𝑚 

• Combining with (1): 𝐷𝑚({𝑆𝑥: 𝐿𝐷,𝑓(ℎ𝑆) > 𝜖}) ≤ ∑ 𝑒−𝜖𝑚
ℎ∈𝐻𝐵

= |𝐻𝐵|𝑒−𝜖𝑚 ≤ |𝐻|𝑒−𝜖𝑚 

• Now, given the choice of 𝑚: 𝐷𝑚({𝑆𝑥: 𝐿𝐷,𝑓(ℎ𝑆) > 𝜖}) ≤ |𝐻|𝑒−𝜖 ln(
|𝐻|

𝛿
)∗

1

𝜖 = |𝐻| ∗
𝛿

|𝐻|
= 𝛿 
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2.4. PAC Learning 
 
Probably Approximately Correct (PAC) learning. 
 
A hypothesis class 𝐻 is PAC learnable if there exist a function 𝑚𝐻: (0,1)2 → ℕ and a learning 
algorithm with the following property: 
∀𝜖, 𝛿 ∈ (0,1), ∀𝐷 over 𝑋, ∀𝑓: 𝑋 → {0,1}  

• IF the realizability assumption holds with respect to 𝐻, 𝐷, 𝑓, 

• THEN when running the learning algorithm on 𝑚 ≥ 𝑚𝐻(𝜖, 𝛿) i.i.d. examples generated by 
𝐷 and labeled by 𝑓, 
the algorithm returns a hypothesis ℎ such that, with probability ≥ 1 − 𝛿 (over the choice of 
examples): 𝐿𝐷,𝑓(ℎ) ≤ 𝜖 

Approximation Parameters: 

• accuracy parameter 𝜖 determines how far the output classifier can be from the optimal one. 

• confidence parameter 𝛿 indicates how likely the classifier is to meet that accuracy 
requirement. 

 
 
Sample Complexity: how many examples are required to guarantee a probably approximately 
correct solution. 

Every finite hypothesis class is PAC learnable with sample complexity 𝑚𝐻(𝜖, 𝛿) ≤ ⌈
log(|𝐻|/𝛿)

𝜖
⌉ 

 
 

2.5. Agnostic PAC Learning 
Agnostic PAC Learning: we relax the realizability assumption by replacing the “target labeling 
function” with a more flexible notion, a data-labels generating distribution. 
Relaxation: 𝐷 over 𝑋 × 𝑌 is a joint distribution over domain points and labels. Composed of two 
parts: 

• 𝐷𝑥 (marginal) distribution over unlabeled domain points 

• 𝐷((𝑥, 𝑦)|𝑥) conditional distribution over labels for each domain point 

Given 𝑥, label 𝑦 is obtained according to a conditional probability ℙ[𝑦|𝑥] 
True error: 𝐿𝐷(ℎ) ≝ ℙ(𝑥,𝑦)~𝐷[ℎ(𝑥) ≠ 𝑦] = 𝐷({(𝑥, 𝑦): ℎ(𝑥) ≠ 𝑦}) 

Training error (empirical risk): 𝐿𝑆(ℎ) ≝
|{𝑖:ℎ(𝑥𝑖)≠𝑦𝑖,1≤𝑖≤𝑚}|

𝑚
 (not changed after the relaxation) 

= probability that for a pair (𝑥𝑖, 𝑦𝑖) taken uniformly at random from 𝑆 the event ℎ(𝑥𝑖) ≠ 𝑦𝑖 holds. 
Essentially 𝔼[𝐿𝑠(ℎ)] = 𝐿𝐷(ℎ) 
 
Goal: find ℎ: 𝑋 → 𝑌 that minimizes 𝐿𝐷(ℎ) 

Bayes Optimal Predictor: the best label predicting function is 𝑓𝐷(𝑥) = {
1, ℙ[𝑦 = 1|𝑥] ≥ 1/2
0, otherwise

 

No other classifier has a lower error. But since we do not know 𝐷, we cannot use this optimal 
predictor 𝑓𝐷. 
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𝐻 is Agnostic PAC Learnable if there exist a function 𝑚𝐻: (0,1)2 → ℕ and a learning algorithm with 
the following property: ∀𝜖, 𝛿 ∈ (0,1) and ∀𝐷 over 𝑋 × 𝑌, 

• when running the learning algorithm on 𝑚 ≥ 𝑚𝐻(𝜖, 𝛿) i.i.d. examples generated by 𝐷, 

• the algorithm returns a hypothesis ℎ such that, with probability ≥ 1 − 𝛿 (over the choice of 
𝑚 training samples): 𝐿𝐷(ℎ) ≤ min

ℎ′∈𝐻
𝐿𝐷(ℎ′) + 𝜖 

Agnostic PAC learning generalizes the definition of PAC learning. 
 
General Loss Functions: any function 𝑙: 𝐻 × 𝑍 → ℝ+ where 𝐻 is any hypotheses set and 𝑍 is some 
domain. Tells us how much we lose by predicting ℎ(𝑥) instead of the correct label 𝑦. 
Risk function = expected loss of a hypothesis ℎ ∈ 𝐻 with respect to 𝐷 over 𝑍: 𝐿𝐷(ℎ) ≝ 𝔼𝑧~𝐷[𝑙(ℎ, 𝑧)] 

Empirical risk: the expected loss over a given sample 𝑆 = (𝑧1, … , 𝑧𝑚) ∈ 𝑍𝑚: 𝐿𝑆(ℎ) ≝
1

𝑚
∑ 𝑙(ℎ, 𝑧𝑖)

𝑚
𝑖=1  

where 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖) 
 
Common loss functions: 

• 0-1 loss: 𝑍 = 𝑋 × 𝑌. Used in binary or multiclass classification 

𝑙0−1(ℎ, (𝑥, 𝑦)) ≝ {
0, ℎ(𝑥) = 𝑦

1, ℎ(𝑥) ≠ 𝑦
 

• Squared loss: 𝑍 = 𝑋 × 𝑌. Used in regression. 

𝑙𝑠𝑞(ℎ, (𝑥, 𝑦)) ≝ (ℎ(𝑥) − 𝑦)2 

 
 
Agnostic PAC Learnability for General Loss Functions:  
𝐻 is agnostic PAC learnable wrt a set 𝑍 and a loss function 𝑙: 𝐻 × 𝑍 → ℝ+  
IF there exist a function 𝑚𝐻: (0,1)2 → ℕ and a learning algorithm with the following property: 
∀𝜖, 𝛿 ∈ (0,1) and ∀𝐷 over 𝑍, 

• when running the learning algorithm on 𝑚 ≥ 𝑚𝐻(𝜖, 𝛿) i.i.d. examples generated by 𝐷, 

• the algorithm returns a hypothesis ℎ such that, with probability ≥ 1 − 𝛿:  
𝐿𝐷(ℎ) ≤ min

ℎ′∈𝐻
𝐿𝐷(ℎ′) + 𝜖 where 𝐿𝐷(ℎ′) = 𝔼𝑧~𝐷[𝑙(ℎ, 𝑧)] 
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3. Uniform Convergence 
 
Uniform convergence is a tool used to show that any finite class is learnable in the agnostic PAC 
model with general loss functions, as long as the range loss function is bounded. 
 
Uniform convergence: the empirical risk (training error) of all members of 𝐻 are good 
approximations of their true risk (generalization error) 
 
𝐴 training set 𝑆 is called 𝝐-representative if ∀ℎ ∈ 𝐻, |𝐿𝑆(ℎ) − 𝐿𝐷(ℎ)| ≤ 𝜖 
 

If 𝑆 is 
𝝐

𝟐
-representative, then any output of the ERM𝐻(𝑆) (eg. ℎ𝑠 ∈ argmin

ℎ∈𝐻
𝐿𝑆(ℎ)) satisfies: 

𝐿𝐷(ℎ𝑠) ≤ min
ℎ∈𝐻

𝐿𝐷(ℎ) + 𝜖 

It means that ERM return a good hypothesis. 

 
 
𝐻 has the uniform convergence property IF exists a function 𝑚𝐻

𝑈𝐶: (0,1)2 → ℕ such that ∀𝜖, 𝛿 ∈
(0,1) and ∀𝐷 over 𝑍 

• IF 𝑆 is a sample of 𝑚 ≥ 𝑚𝐻
𝑈𝐶(𝜖, 𝛿) i.i.d. examples generated by 𝐷, 

• THEN with probability ≥ 1 − 𝛿, 𝑆 is 𝜖-representative. 
 
If 𝐻 has the uniform convergence property with a function 𝑚𝐻

𝑈𝐶  then this class is agnostically PAC 
learnable with the sample complexity 𝑚𝐻(𝜖, 𝛿) ≤ 𝑚𝐻

𝑈𝐶(𝜖/2, 𝛿). 
This means that 𝐸𝑅𝑀𝐻 is a successful agnostic PAC learner for 𝐻. 
 
 
 
Hoeffding's Inequality: Let 휃1, … , 휃𝑚 be a sequence of i.i.d. random variables and assume that for 
all 𝑖, 𝔼[휃𝑖] = 𝜇 and ℙ[𝑎 ≤ 휃𝑖 ≤ 𝑏] = 1. Then, for any 𝜖 > 0:  

ℙ [|
1

𝑚
∑휃𝑖

𝑚

𝑖=1

− 𝜇| > 𝜖] ≤ 2𝑒
−

2𝑚𝜖2

(𝑏−𝑎)2 

P(Average of the observations – expected value of each observation>…) 
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Every finite hypothesis class is agnostic PAC learnable under some restrictions on the loss. 
LET: 

• 𝐻 be a finite hypothesis class, 

• 𝑍 be a domain, 

• 𝑙: 𝐻 × 𝑍 → [0,1] 
THEN: 

• 𝐻 enjoys the uniform convergence property with sample complexity 

𝑚𝐻
𝑈𝐶(𝜖, 𝛿) ≤ ⌈

log(2|𝐻|/𝛿)

2𝜖2
⌉ 

• 𝐻 is agnostically PAC learnable using the ERM algorithm with sample complexity 

𝑚𝐻(𝜖, 𝛿) ≤ 𝑚𝐻
𝑈𝐶(𝜖/2, 𝛿) ≤ ⌈

2 log(2|𝐻|/𝛿)

𝜖2
⌉ 

Idea of the proof: 

• prove that uniform convergence holds for a finite hypothesis class 

• use previous result on uniform convergence and PAC learnability 
Proof: (lecture 6) 
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13 
 

4. Bias-Complexity Tradeoff 
 
The No-Free-Lunch Theorem: 
LET: 

• 𝐴 be any learning algorithm for the task of binary classification with respect to the 0 − 1 loss 
over a domain 𝑋. 

• training set size 𝑚 <
|𝑋|

2
 

THEN ∃ a distribution 𝐷 over 𝑋 × {0,1} such that: 

• ∃𝑓: 𝑋 → {0,1} with 𝐿𝐷(𝑓) = 0 

• With probability of at least 1/7 over the choice of 𝑆~𝐷𝑚 we have that 𝐿𝐷(𝐴(𝑆)) ≥ 1/8 

 
This theorem states that for every learner, there exists a task on which it fails, even though that task 
can be successfully learned by another learner. 
 
𝐻 is NOT PAC learnable when 𝑋 is an infinite domain and 𝐻 is the set of all function 𝑋 → {0,1} 
 
So, when approaching a particular learning problem, we should have some prior knowledge on 𝐷. 
Types of such prior knowledge: 

• 𝐷 comes from some specific parametric family of distributions. 

• Exists ℎ in some predefined hypothesis class 𝐻, such that 𝐿𝐷(ℎ) = 0. 

• A softer type of prior knowledge on 𝐷 is assuming that min
ℎ∈𝐻

𝐿𝐷(ℎ) is small. 

 
Trade-off: We would like 𝐻 large so it will contain a lot of ℎ with small 𝐿𝐷(ℎ) but for the no free 
lunch theorem 𝐻 cannot be too large. 
 
We decompose the error of an ERM algorithm over a class 𝐻 into two components: 

𝐿𝐷(ℎ𝑆) = 𝜖𝑎𝑝𝑝 + 𝜖𝑒𝑠𝑡 

• Approximation error (Bias) 𝜖𝑎𝑝𝑝 = min
ℎ∈𝐻

𝐿𝐷(ℎ). reflects the quality of our prior knowledge, 

measured by the minimal risk of a hypothesis in our hypothesis class. 
To decrease it: choose 𝐻 larger 

• Estimation error 𝜖𝑒𝑠𝑡 = 𝐿𝐷(ℎ𝑆) − min
ℎ∈𝐻

𝐿𝐷(ℎ). Error due to overfitting. 

To decrease it: choose 𝐻 smaller 
These two terms imply a tradeoff between choosing a more complex 𝐻 or a less complex 𝐻. 

 
 
The generalization error 𝐿𝐷(ℎ) for a function ℎ is estimated using a test set. 
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5. VC-Dimension 
 
Goal: figure out which classes 𝐻 are PAC learnable. 
 

Restriction of 𝑯 to 𝑪: 𝐻𝐶 = {(ℎ(𝑐1),… , ℎ(𝑐𝑚)): ℎ ∈ 𝐻} where 

• 𝐻 = class of functions ℎ: 𝑋 → {0,1} 

• 𝐶 = {𝑐1, … , 𝑐𝑚} ⊂ 𝑋 

Each function 𝐶 → {0,1} in 𝐻𝐶  is represented as a vector in {0,1}|𝐶| 
𝐻𝐶  is the set of functions from 𝐶 to {0,1} that can be derived from 𝐻. 
Note: 0 ≤ |𝐻𝐶| ≤ 2𝑚 
 

𝐻 shatters the set 𝐶: if 𝐻𝐶  contains all 2|𝐶| functions 𝐶 → {0,1} 
 
VC-dimension of 𝑯: VCdim(𝐻) is the maximal size of a set 𝐶 ⊂ 𝑋 that can be shattered by 𝐻. 
VC-dimension measures the complexity of 𝐻, how large a dataset that is perfectly classified using 
the functions in 𝐻 can be. 
 
𝐻 is not PAC learnable if VCdim(𝐻) = +∞ 
A finite VCdimension guarantees learnability. If |𝐻| < +∞ then VCdim(𝐻) ≤ log2|𝐻| 
 
To show that VCdim(𝑯) = 𝒅: show that 

• there exists a set 𝐶 of size 𝑑 which is shattered by 𝐻 (VCdim(𝐻) ≥ 𝑑, take 𝑑 points and for 
each possible labeling of the points (0,1) 2𝑑 prove that  you can place those point in the plot 
and label that with that combination of 0/1 (shatters)) 

• every set of size 𝑑 + 1 is not shattered by 𝐻 (VCdim(𝐻) ≤ 𝑑, take 𝑑 + 1 points and prove 
that there is at least one labelling not possible, it means that there is no way to place the 
point in the graph to obtain that labeling) 

 
Threshold Functions: 

• 𝐻 = {ℎ𝑎: 𝑎 ∈ ℝ} where ℎ𝑎: ℝ → {0,1}, ℎ𝑎(𝑥) = {
1, 𝑥 < 𝑎
0, 𝑥 ≥ 𝑎

 

• VCdim(𝐻) = 1 
Intervals: 

• 𝐻 = {ℎ𝑎,𝑏: 𝑎, 𝑏 ∈ ℝ, 𝑎 < 𝑏} where ℎ𝑎,𝑏: ℝ → {0,1}, ℎ𝑎,𝑏(𝑥) = {
1, 𝑎 < 𝑥 < 𝑏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

• VCdim(𝐻) = 2 
Axis Aligned Rectangles: 

• 𝐻 = {ℎ(𝑎1,𝑎2,𝑏1,𝑏2): 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ ℝ, 𝑎1 ≤ 𝑎2, 𝑏1 ≤ 𝑏2} 

• ℎ(𝑎1,𝑎2,𝑏1,𝑏2)(𝑥1, 𝑥2) = {
1, 𝑎1 ≤ 𝑥1 ≤ 𝑎2, 𝑏1 ≤ 𝑥2 ≤ 𝑏2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

• VCdim(𝐻) = 4 
Convex Sets:  

• ℎ:ℝ2 → {0,1}, ℎ(𝒙) = {
1, 𝒙 ∈ 𝑆
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 where 𝑆 is a convex subset of ℝ2 

• VCdim(𝐻) = +∞ 
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The Fundamental Theorem of Statistical learning: a class of infinite VC-dimension is not learnable. 
Let 

• 𝐻 be a hypothesis class of functions from a domain 𝑋 to {0, 1} 

• loss function be the 0 − 1 loss. 

• Assume that 𝑉𝐶𝑑𝑖𝑚(𝐻) =  𝑑 < +∞. 
Then, there are absolute constants 𝐶1, 𝐶2 such that: 

• 𝐻 has the uniform convergence property with sample complexity 

𝐶1

𝑑 + log(1/𝛿)

𝜖2
≤ 𝑚𝐻

𝑈𝐶(𝜖, 𝛿) ≤ 𝐶2

𝑑 + log(1/𝛿)

𝜖2
 

• 𝐻 is agnostic PAC learnable with sample complexity 

𝐶1

𝑑 + log(1/𝛿)

𝜖2
≤ 𝑚𝐻(𝜖, 𝛿) ≤ 𝐶2

𝑑 + log(1/𝛿)

𝜖2
 

Equivalently: 

• LET: 𝐻, VCdim(𝐻) < +∞. 

• THEN: with probability ≥ 1 − 𝛿 (over 𝑆~𝐷𝑚) we have: 

∀ℎ ∈ 𝐻, 𝐿𝐷(ℎ) ≤ 𝐿𝑆(ℎ) + 𝐶√
VCdim(𝐻) + log(1/𝛿)

2𝑚
 

Where 𝐶 is universal constant 
We can use ERM rule to find the ℎ ∈ 𝐻 that minimizes the upper bound. 

 
If 𝐻 is the class of halfspaces in ℝ𝑑 then VCdim(𝑯) = 𝒅 
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6. Linear Models 
 
Halfspaces, linear regression predictors, and logistic regression predictors are hypothesis classes. 
We use the ERM approach to learn linear predictors. 
 

Class of affine functions 𝐿𝑑 = {ℎ𝒘,𝑏:𝒘 ∈ ℝ𝑑 , 𝑏 ∈ ℝ} where ℎ𝒘,𝑏(𝒙) = 〈𝒘, 𝒙〉 + 𝑏 = (∑ 𝑤𝑖𝑥𝑖
𝑑
𝑖=1 ) +

𝑏. 
Written also as: 

• 𝐿𝑑 = {𝒙 → 〈𝒘, 𝒙〉 + 𝑏:𝒘 ∈ ℝ𝑑 , 𝑏 ∈ ℝ} 
• ℎ𝒘,𝑏(𝒙) = 〈𝒘, 𝒙〉 + 𝑏 = 〈𝒘′, 𝒙′〉 where 𝒘′ = (𝑏,𝑤1, … , 𝑤𝑑), 𝒙′ = (1, 𝑥1, … , 𝑥𝑑) 

 
Linear models hypothesis class: 𝐻: 𝜙 ∘ 𝐿𝑑 where 𝜙:ℝ → 𝑌 

• ℎ ∈ 𝐻 is ℎ:ℝ𝑑 → 𝑌 

• 𝜙 depends on the learning problem 
o Binary classification 𝑌 = {−1,1}, 𝜙(𝑧) = sign(𝑧) 
o Regression 𝑌 = ℝ, 𝜙(𝑧) = 𝑧 

 

6.1. Linear Regression 
Used to learn a linear function ℎ:ℝ𝑑 → ℝ 

Hypothesis class: 𝐻𝑟𝑒𝑔 = 𝐿𝑑 = {𝒙 → 〈𝒘, 𝒙〉 + 𝑏:𝒘 ∈ ℝ𝑑 , 𝑏 ∈ ℝ} 

Squared-loss function: 𝑙(ℎ, (𝒙, 𝑦)) ≝ (ℎ(𝒙) − 𝑦)2 

Empirical risk=training error= Mean Squared Error 𝐿𝑆(ℎ) =
1

𝑚
∑ (ℎ(𝒙𝒊) − 𝑦𝑖)

2𝑚
𝑖=1  

 
Least Squares: algorithm that solves the ERM problem for the hypothesis class of linear regression 
predictors with respect to the squared loss. 

Best hypothesis: argmin
𝒘

𝐿𝑆(ℎ𝒘) = argmin
𝒘

1

𝑚
∑ (〈𝒘, 𝒙𝑖〉 − 𝑦𝑖)

2𝑚
𝑖=1  (We want to find 𝒘) 

Residual Sum of Squares RSS(𝒘) = ∑ (〈𝒘, 𝒙𝑖〉 − 𝑦𝑖)
2𝑚

𝑖=1 = (𝒚 − 𝑿𝒘)𝑇(𝒚 − 𝑿𝒘) 

 

We want to find the 𝒘 that minimize RSS:  so we compute 
𝜕𝑅𝑆𝑆(𝒘)

𝜕𝒘
= 0 

• −2𝑿𝑇(𝒚 − 𝑿𝒘) = 0 is equivalent to 𝑿𝑻𝑿𝒘 = 𝑿𝑻𝒚 

Let 𝐴 = 𝑿𝑻𝑿 = ∑ 𝑥𝑖𝑥𝑖
𝑇𝑚

𝑖=1 , 𝒃 = 𝑿𝑇𝒚 = ∑ 𝑦𝑖𝑥𝑖
𝑚
𝑖=1  

• if 𝐴 is invertible: 𝒘 = 𝐴−1𝒃 = (𝑿𝑇𝑿)−1𝑿𝑇𝒚 

• if 𝐴 is not invertible: 𝒘 = 𝐴†𝒃  where 𝐴† is the Moore-Penrose generalized inverse. 
 
Polynomial models: 

• Assume 𝑋 = ℝ 

• Polynomial of degree 𝑟: 𝑤0 ∗ 1 + 𝑤1 ∗ 𝑥 + 𝑤2 ∗ 𝑥2 + ⋯+ 𝑤𝑟 ∗ 𝑥𝑟 
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• 𝒙’ is the instance (Feature expansion): we pick 𝒙 and we apply a transformation to get 𝒙’ so 

we can use linear regression formulas. 
If 𝒙 ∈ ℝ𝑑 

                  
 
 

Coefficient of determination 𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 

• 𝑆𝑆𝑟𝑒𝑠 =
1

𝑚
∑ (ℎ(𝒙𝒊) − 𝑦𝑖)

2𝑚
𝑖=1  Sum of squares residual 

• 𝑆𝑆𝑡𝑜𝑡 =
1

𝑚
∑ (𝑦𝑖 − �̅�)2𝑚

𝑖=1 , where �̅� is the average of the 𝑦𝑖. Total sum of squares. 

In regression, the 𝑅2 is a statistical measure of how well the regression predictions approximate the 
real data points. An 𝑅2 of 1 indicates that the regression predictions perfectly fit the data. 
Is a measure how well ℎ performs against the best naïve predictor. 
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6.2. Linear Classification 
Used in binary classification problems ℎ:ℝ𝑑 → {−1,1} 

Class of halfspaces: 𝐻𝑑 = sign ∘ 𝐿𝑑 = {𝒙 → sign(〈𝒘, 𝒙〉 + 𝑏):𝒘 ∈ ℝ𝑑} 
The instances that are “above” the hyperplane are labeled positively. 
Instances that are “below” the hyperplane are labeled negatively. 
Loss function: 0-1 
Linearly separable data: there exists 𝒘 such that 𝑦𝑖〈𝒘, 𝒙𝑖〉 > 0 
 
Perceptron algorithm: algorithm that find a good hypothesis implementing the ERM rule 

 
If (𝑥𝑖, 𝑦1),… , (𝑥𝑚, 𝑦𝑚) is linearly separable, 𝐵 = min{‖𝒘‖: 𝑦𝑖〈𝒘, 𝑥𝑖〉 ≥ 1 ∀𝑖, 𝑖 = 1,… ,𝑚}, 𝑅 =
max

i
‖𝑥𝑖‖. The algorithm stops after at most (𝑅𝐵)2 iterations 

 
For separable data: convergence is guaranteed, potentially multiple solutions. 
For non-separable data: run for some time and keep best solution found up to that point 
 

6.3. Logistic Regression 
Used to learn a function ℎ:ℝ𝑑 → [0,1], for classification tasks, is interpreted as the probability that 
the label of 𝑥 is 1. 
 

Logistic function (sigmoid) 𝜙𝑠𝑖𝑔(𝑧) =
1

1+𝑒−𝑧 =
𝑒𝑧

1+𝑒𝑧 

Hypothesis class: 𝐻𝑠𝑖𝑔 = 𝜙𝑠𝑖𝑔 ∘ 𝐿𝑑 = {𝒙 → 𝜙𝑠𝑖𝑔(〈𝒘, 𝒙〉):𝒘 ∈ ℝ𝑑} 

ℎ𝒘(𝒙) =
1

1 + exp(−〈𝒘, 𝒙〉)
∈ [0,1] 

Difference with halfspaces: when 〈𝒘, 𝒙〉 ≈ 0 halfspaces are 1 or -1, logistic is ½ (uncertain) 
 

Loss function: 𝑙(ℎ𝒘, (𝒙, 𝑦)) = log(1 + exp(−𝑦〈𝒘, 𝒙〉)) 

If 𝑦 = +1 then ℎ𝒘(𝒙) is large. If 𝑦 = −1 then ℎ𝒘(𝒙) is small 
 
ERM problem associated with logistic regression is argmin

𝒘∈ℝ𝑑

(∑ log(1 + exp(−𝑦𝑖〈𝒘, 𝒙𝒊〉))
𝑚
𝑖=1 ) 

ERM formulation is the same as the one arising from Maximum Likelihood Estimation. 
MLE is a statistical approach for finding the parameters that maximize the joint probability of a given 
dataset assuming a specific parametric probability function. 

• Given training set 𝑆 = ((𝒙𝟏, 𝑦1),… , (𝒙𝒎, 𝑦𝑚)), assume each (𝒙𝒊, 𝑦𝑖) is iid from some 

probability distribution of parameters 휃 (sometimes 𝑆 = (𝑥1, … , 𝑥𝑚) 

• Consider ℙ[𝑆|휃] (likelihood of data given the parameters) 

• Log likelihood: 𝐿(𝑆; 휃) = log(ℙ[𝑆|휃]) 

• Maximum likelihood estimator: 휃 = argmax
𝜃

𝐿(𝑆; 휃) 
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7. Statistics 
 
Probability: Given a statistical model with some parameters 𝜽, describe how plausible a future 
outcome 𝒙 is. 
Likelihood: describe how plausible a particular set of parameter values 𝜽 are, after the outcome 𝒙 
is known. Is not a probability distribution. 
PDF is a function of 𝑥 (with 휃 fixed) while the likelihood function is a function of 휃 (with 𝑥 fixed). 

 
Maximum likelihood estimate (MLE): given a dataset 𝑿 try to estimate the most likely values for 
the model parameters. To do this, you must find the values that maximize the likelihood function, 
given 𝑿. 
 
 
𝐼(𝒙) is a Confidence interval (set) (for a parameter 휃) of level 1 − 𝛼 if ℙ[휃 ∈ 𝐼(𝒙)] > 1 − 𝛼 
To locate 휃 with high precision and high confidence, we would like that the set 𝐼(𝒙) is small and 
contains 휃 with high probability (𝛼 small) 
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8. Model Selection and Validation 
 
Model selection: the task of choosing the best algorithm and its parameters for a particular 
problem. 
Two approaches: 

• Validation: partition the training set into two sets. One is used for training each of the 
candidate models, and the second is used for deciding which of them yields the best results. 

• Structural Risk Minimization (SRM) paradigm: useful when a learning algorithm depends on 
a parameter that controls the bias-complexity tradeoff. 

 
Validation: Once you pick a hypothesis, use new data to estimate its true error. 
Let ℎ be some predictor and assume that the loss function is in [0, 1]. Then, for every 𝛿 ∈ (0,1) with 
probability of at least 1 − 𝛿 over the choice of a validation set 𝑉 of size 𝑚𝑣: 

|𝐿𝑉(ℎ) − 𝐿𝐷(ℎ)| ≤ √
log(2/𝛿)

2𝑚𝑣
 

Compared to VCdim, if 𝑚𝑣 is in the order of 𝑚, validation is more accurate. 
 
Validation for Model Selection: 

• Train different algorithms, returning to us a set of predictors 𝐻 = {ℎ1, … , ℎ𝑟} 

• Choose the predictor that minimizes the error over the validation set. In other words, we 
apply ERM𝐻 over the validation set. 

Assume that the loss function is in [0, 1]. Then, for every 𝛿 ∈ (0,1) with probability ≥ 1 − 𝛿 over 
the choice of a validation set 𝑉 of size 𝑚𝑣: 

∀ℎ ∈ 𝐻, |𝐿𝑉(ℎ) − 𝐿𝐷(ℎ)| ≤ √
log(2|𝐻|/𝛿)

2𝑚𝑣
 

The error on the validation set approximates the true error as long as 𝐻 is not too large, because if 
we have too many hypotheses we’re in danger of overfitting. 
 
The Model-Selection Curve: shows the training error and validation error as a function of the 
complexity of the model considered. If Training error decreases but validation error increases it 
means overfitting. 

 
If we have one or more parameters  

• Start with a rough grid of values 

• Plot the corresponding model-selection curve 

• Based on the curve, zoom in to the correct regime 

• Restart from 1) with a finer grid 
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Train-Validation-Test Split: (estimate the true risk after model selection) 

• Training set: used to learn the best model ℎ𝑖  from each 𝐻𝑖 

• Validation set: used to pick one hypothesis ℎ from {ℎ1, … , ℎ𝑟} 

• Test set: used to estimate the true risk 𝐿𝐷(ℎ). Not involved in the choice of ℎ. 
 
k-Fold Cross Validation: used when we have not much data 

• partition (training) set into 𝑘 folds of size 𝑚/𝑘 

• for each fold: 
o train on union of other folds 
o estimate error (for learned hypothesis) from the fold 

• estimate of the true error = average of the estimated errors above 
Lease-one-out cross validation: 𝑘 = 𝑚 
Often cross validation is used for model selection, at the end, the final hypothesis is obtained from 
training on the entire training set 

 
 
Some potential steps to follow if learning fails: 

• if you have parameters to tune, plot model-selection curve to make sure they are tuned 
appropriately 

• if training error is excessively large consider: 
o enlarge 𝐻 
o change 𝐻 
o change feature representation of the data 

• if training error is small, use learning curves to understand whether problem is 
approximation error (or estimation error) 

• if approximation error seems small: 
o get more data 
o educe complexity of 𝐻 

• if approximation error seems large: 
o change 𝐻 
o change feature representation of the data 
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9. Regularization and Feature Selection 
 

9.1. Regularization 
Stable algorithm: if a slight change of its input does not change its output much. 
Regularization: is as a stabilizer of the learning algorithm. 
Regularization function: 𝑅:ℝ𝑑 → ℝ, measures the complexity of hypotheses. 
Regularized Loss Minimization (RLM) is a learning paradigm that minimize the sum of the empirical 
risk and a regularization function. 

𝐴(𝑆) = argmin
𝒘

(𝐿𝑆(𝒘) + 𝑅(𝒘)) 

The algorithm balances between low empirical risk and “less complex” hypotheses. 
 

 
For low values of 𝜆 we are ignoring the 𝑅(𝒘) term, so we have 𝐿𝑆 low and 𝐿𝐷 high, that corresponds 
to overfitting. Increasing 𝜆 we are taking the complexity more into account, and for some value of 
𝜆 we can have a good balance between training error and complexity of the model. 
 
L1 Regularization: 𝑅(𝒘) = 𝜆‖𝒘‖1 

• 𝜆 ∈ ℝ, 𝜆 > 0 
• ‖𝒘‖1 = ∑ |𝑤𝑖|

𝑑
𝑖=1  

• 𝐴(𝑆) = argmin
𝒘

(𝐿𝑆(𝒘) + 𝜆‖𝒘‖1) 

LASSO: Linear regression with squared loss + L1 regularization 

𝒘 = argmin
𝒘

(𝜆‖𝒘‖1 +
1

𝑚
∑(〈𝒘, 𝒙𝒊〉 − 𝑦𝑖)

2

𝑚

𝑖=1

) 

 
L2 (Tikhonov) regularization function: 𝑅(𝒘) = 𝜆‖𝒘‖2 

• 𝜆 ∈ ℝ, 𝜆 > 0. Regulates the tradeoff between the empirical risk 𝐿𝑆(𝒘) and the complexity 
‖𝒘‖2 of the model 

• ‖𝒘‖2 = ∑ 𝑤𝑖
2𝑑

𝑖=1  L2 norm: measures the complexity of hypothesis defined by 𝒘 
Ridge Regression: linear regression with the squared loss + Tikhonov. 

𝒘 = argmin
𝒘

(𝜆‖𝒘‖2 +
1

𝑚
∑(〈𝒘, 𝑥𝑖〉 − 𝑦𝑖)

2

𝑚

𝑖=1

) = (𝜆𝑰 + 𝑿𝑻𝑿)−1𝑿𝑻𝒚 

Derivation proof: 

• 𝒘 = argmin
𝒘

(𝜆‖𝒘‖2 + 𝑅𝑆𝑆) = argmin
𝒘

(𝜆‖𝒘‖2 + (𝒚 − 𝑿𝒘)𝑇(𝒚 − 𝑿𝒘)) 
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• We want to minimize 𝑓(𝒘) = 𝜆‖𝒘‖2 + (𝒚 − 𝑿𝒘)𝑇(𝒚 − 𝑿𝒘) 

• So, we compute gradient 
𝜕𝑓(𝒘)

𝜕𝒘
= 0 ---> 2𝜆𝒘 − 2𝑿𝑇(𝒚 − 𝑿𝒘) = 0 

• Math passages to find w:  
 
Fitting-Stability Tradeoff  

Expected risk of a learning algorithm: 𝔼𝑆[𝐿𝐷(𝐴(𝑆))] = 𝔼𝑆[𝐿𝑆(𝐴(𝑆))] + 𝔼𝑆[𝐿𝐷(𝐴(𝑆)) − 𝐿𝑆(𝐴(𝑆))] 

• 𝔼𝑆[𝐿𝑆(𝐴(𝑆))] reflects how well A(S) fits the training set 

• 𝔼𝑆[𝐿𝐷(𝐴(𝑆)) − 𝐿𝑆(𝐴(𝑆))] reflects the difference between the true and empirical risks of 

A(S). = Overfitting, bounded by stability of A(S) 
We need that the sum of both terms will be small. The tradeoff between the two terms is controlled 
by 𝜆 
𝜆 is chosen with Validation. 
 
 

9.2. Feature selection 
Feature function: any measurement of the real-world object can be regarded as a feature. 
Feature vector: 𝒙 ∈ 𝑋𝑑 
Feature selection: task of selecting a small number of features from a large pool, that will be used 
by the predictor. This prevent overfitting and prediction can be done faster. 
Feature manipulations and normalization: simple transformations that we apply on our original 
features. These transformations may decrease the sample complexity of our learning algorithm, its 
bias, or its computational complexity. 
Feature learning: methods that automate the process of feature construction. 
 
Problem to solve: Select 𝑘 features that minimize the empirical risk 

min
𝒘

𝐿𝑆(𝒘)  subject to ‖𝒘‖0 ≤ 𝑘 where ‖𝒘‖0 = |{𝑖: 𝑤𝑖 ≠ 0}| 

 
Subset selection: 𝑂(𝑑𝑘), NP-Hard 

 
 
Greedy algorithms: Forward Selection and Backward Selection 
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Forward Selection: 𝑂(𝑘𝑑) 
Start from the empty solution, add one feature at the time, until solution has cardinality 𝑘 

 
 

Backward Selection: 𝑂((𝑑 − 𝑘)𝑑) 

start from the solution which includes all features, remove one features at the time, until solution 
has cardinality 𝑘 
 
These 3 algorithms are trained using just the training set, this can lead to overfit. So, we can use a 
validation set in each iteration. Or also cross-validation. 
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27 
 

10. Support Vector Machines 
 
Learn linear predictors in high dimensional feature spaces. 
 

10.1. Margin and Hard-SVM 
Let: 

• Instance set: 𝑋 = ℝ𝑑 

• Label set 𝑌 = {−1,+1} 

• Training set: 𝑆 = ((𝒙𝟏, 𝑦1),… , (𝒙𝒎, 𝑦𝑚)) 

• Hypothesis set 𝐻: halfspaces 𝐻𝒘,𝑏 = {𝒙 → sign(〈𝒘, 𝒙〉 + 𝑏):𝒘 ∈ ℝ𝑑 , 𝑏 ∈ ℝ} 

Training set linearly separable: if exists a halfspace (𝒘, 𝑏) 𝑠. 𝑡. 𝑦𝑖 = sign(〈𝒘, 𝒙𝒊〉 + 𝑏) ∀𝑖 
Equivalent to ∀𝑖 = 1, … ,𝑚: 𝑦𝑖(〈𝒘, 𝒙𝒊〉 + 𝑏) > 0 
 
Distance between point 𝒙 and hyperplane 𝐿 = {𝒗: 〈𝒘, 𝒗〉 + 𝑏 = 0} is 

𝑑(𝒙, 𝐿) = min{‖𝒙 − 𝒗‖: 𝒗 ∈ 𝐿} 
If ‖𝒘‖ = 1 then 𝑑(𝒙, 𝐿) = |〈𝒘, 𝒙〉 + 𝑏| 

 
Margin of a separating hyperplane: is its minimum distance to an example in 
the training set 𝑆 
If ‖𝒘‖ = 1 then margin = min

𝑖∈{1,…,𝑚}
|〈𝒘, 𝒙𝒊〉 + 𝑏| 

The closest examples are called support vectors 
 
 
Hard-SVM: learning rule in which we return an ERM hyperplane that separates the training set with 
the largest possible margin. (only for linearly separable data) 

argmax
(𝒘,𝑏):‖𝒘‖=1

( min
𝑖∈{1,…,𝑚}

|〈𝒘, 𝒙𝒊〉 + 𝑏|)                                               (maximum margin) 

subject to ∀𝑖 = 1, … ,𝑚: 𝑦𝑖(〈𝒘, 𝒙𝒊〉 + 𝑏) > 0                           (Training set linearly separable) 

Equivalent formulation (due to separability assumption): argmax
(𝒘,𝑏):‖𝒘‖=1

( min
𝑖∈{1,…,𝑚}

𝑦𝑖(〈𝒘, 𝒙𝒊〉 + 𝑏)) 

Equivalent formulation as quadratic optimization problem (easily solvable by solvers): 

 
(Equivalent formulation) Homogenous halfspaces: pass through the origin and are defined by 
sign(〈𝒘, 𝒙〉), where the bias term 𝑏 is set to be zero. 
Hard-SVM for homogenous halfspaces: 𝒘𝟎 = min

𝒘
‖𝒘‖2 subject to ∀𝑖 = 1,… ,𝑚: 𝑦𝑖(〈𝒘, 𝒙𝒊〉) ≥ 1 

 

Equivalent Dual formulation: max
𝜶∈ℝ𝑚:𝜶≥𝟎

(∑ 𝛼𝑖
𝑚
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗〈𝒙𝒋, 𝒙𝒊〉

𝑚
𝑗=1

𝑚
𝑖=1 ) 

Solution is the vector 𝜶 which defines the support vectors = {𝒙𝒊: 𝛼𝑖 ≠ 0} 
Dual problem only involves inner products between instances and does not require direct access to 
𝒙𝒊. This property is important when implementing SVM with kernels. 
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10.2. Soft-SVM 
Used if the training set is not linearly separable. It allows to have some points inside the margin or 
wrongly classified. 
Hard-SVM constraints: 𝑦𝑖(〈𝒘, 𝒙𝒊〉 + 𝑏) ≥ 1 
Soft-SVM constraints: 

• Slack variables 𝜉1, … , 𝜉𝑚 ≥ 0 

• ∀𝑖 ∈ {1,… ,𝑚}: 𝑦𝑖(〈𝒘, 𝒙𝒊〉 + 𝑏) ≥ 1 − 𝜉𝑖 
• each 𝜉𝑖 measure how much the constraint 𝑦𝑖(〈𝒘, 𝒙𝒊〉 + 𝑏) ≥ 1 is violated. 

o 𝜉𝑖 = 0 means 𝒙𝒊 correctly classified 
o 0 < 𝜉𝑖 ≤ 1: 𝑥𝑖  correctly classified but is inside the margin 
o 𝜉𝑖 > 1 means 𝒙𝒊 is wrongly classified. 

Soft-SVM jointly minimizes the norm of 𝒘 (corresponding to the margin) and the average of 𝜉𝑖 
(corresponding to the violations of the constraints). 
Parameter 𝜆 > 0: tradeoff between norm of 𝒘 and average of 𝜉𝑖. Bigger 𝜆 means bigger margin. 
 
Soft-SVM Optimization Problem: 

 
 

Hinge Loss: 𝐿𝑆
ℎ𝑖𝑛𝑔𝑒

((𝒘, 𝑏)) =
1

𝑚
∑ 𝑙ℎ𝑖𝑛𝑔𝑒((𝒘, 𝑏), (𝒙𝑖, 𝑦𝑖))

𝑚
𝑖=1  

         where 𝑙ℎ𝑖𝑛𝑔𝑒((𝒘, 𝑏), (𝒙𝑖, 𝑦𝑖)) = max{0,1 − 𝑦𝑖(〈𝒘, 𝒙𝒊〉 + 𝑏)} 

Equivalent Hinge formulation: min
𝒘

(𝜆‖𝒘‖2 + 𝐿𝑆
ℎ𝑖𝑛𝑔𝑒(𝒘, 𝑏))  

 
 
Hinge formulation can be solved with optimization solvers OR with Stochastic Gradient Descent. 
 
Gradient Descent: General approach for minimizing a differentiable convex function 𝑓(𝒘). 
Measures the local gradient of the error function with regards to the parameter vector 𝜽, and it 
goes in the direction of descending gradient. 

Gradient: vector of partial derivatives ∇𝑓(𝐰) = (
𝜕𝑓(𝒘)

𝜕𝑤1
, … ,

𝜕𝑓(𝒘)

𝜕𝑤𝑑
)  (where 𝑓 = 𝑙(𝒘, (𝒙𝒊, 𝑦𝑖))) 
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Stochastic Gradient Descent (SGD): at every step instead of using exactly the gradient, we take a 
(random) vector (random from the training set) with expected value equal to the gradient direction. 

 
 
SGD for Solving Soft-SVM:  
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10.3. Kernels 
The expressive power of halfspaces is rather restricted. 
To make the class of halfspaces more expressive we can first map the original instance space into 
another space (possibly of a higher dimension) and then learn a halfspace in that space. 
Basic paradigm: 

• Given some domain set 𝑋 choose a non-linear mapping 𝜓:𝑋 → 𝐹, usually 𝐹 = ℝ𝑛 

• Given a sequence of labeled examples 𝑆 = (𝒙𝟏, 𝑦1), … , (𝒙𝒎, 𝑦𝑚) create the image sequence 

�̂� = ((𝜓(𝒙𝟏), 𝑦1),… , (𝜓(𝒙𝒎), 𝑦𝒎)) 

• Train a linear predictor ℎ over �̂� 

• Predict the label of a test point, 𝒙, to be ℎ(𝜓(𝒙)) 

 
The dual formulation requires to compute 〈𝜓(𝒙),𝜓(𝒙′)〉 
Kernel function: 𝐾𝜓(𝒙, 𝒙′) = 〈𝜓(𝒙),𝜓(𝒙′)〉 

• 𝐾 specify similarity between instances. 

• 𝜓 maps the domain set 𝑋 into a space where these similarities are realized as inner products. 
To compute 𝐾𝜓 we must be able to compute 𝜓(𝒙) that is very expensive. 

 
Kernel trick: in some cases we can compute directly 𝐾𝜓 without computing 𝜓(𝒙) 

 
Common kernels: 

• Linear: 𝜓(𝒙) = 𝒙 

• Q-Polynomial: 𝐾(𝒙, 𝒙′) = (𝛾〈𝒙, 𝒙′〉 + 휁)𝑄  𝛾, 휁 > 0         usually used with 𝑄 ≤ 10 ∈ ℕ 

 
• Gaussian RBF: 𝐾(𝒙, 𝒙′) = exp(−𝛾‖𝒙 − 𝒙′‖2)  𝛾 > 0     usuallly used with 𝛾 ∈ [0,1] 

• Sigmoid: 𝐾(𝒙, 𝒙′) = tanh(𝛾〈𝒙, 𝒙′〉 + 휁)  𝛾, 휁 > 0 
 
Choice of kernel: 
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10.4. SVM for regression 
Instead of trying to fit the largest possible street between two classes while limiting margin 
violations, SVM Regression tries to fit as many instances as possible on the street while limiting 
margin violations. 
The width of the street is controlled by a hyperparameter 𝜺. 

 
Function to minimize:  

𝜆

2
‖𝒘‖2 + ∑ 𝑉 (𝑦𝑖 − 〈𝒙𝒊, 𝒘〉 − 𝑏)𝑚

𝑖=1   

where loss function 𝑉 (𝑟) = {
0, |𝑟| < 휀

|𝑟| − 휀,  otherwise
 

Solution has the form: 𝒘 = ∑ (𝛼𝑖
∗ − 𝛼𝑖)𝒙𝒊

𝑚
𝑖=1  

 
Final model produced: ℎ(𝒙) = ∑ (𝛼𝑖

∗ − 𝛼𝑖)〈𝒙𝒊, 𝒙〉𝑚
𝑖=1 + 𝑏 where 𝛼𝑖

∗, 𝛼𝑖 ≥ 0 
Support vector: 𝒙𝒊 such that 𝛼𝑖

∗ − 𝛼𝑖 ≠ 0 
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11. Neural Networks 
 

11.1. Basics 
Neuron: function 𝒙 → 𝜎(〈𝒗, 𝒙〉) with 𝒙 ∈ ℝ𝑑 
Activation function: 𝜎:ℝ → ℝ 

• sign: 𝜎(𝑎) = sign(𝑎) 

• threshold: 𝜎(𝑎) = 𝟏[𝑎 > 0] 

• sigmoid: 𝜎(𝑎) =
1

1+𝑒−𝑎 

 
Neural network formalism: 

• Acyclic graph 𝐺 = (𝑉, 𝐸) 

• Weight function 𝑤:𝐸 → ℝ 

• 𝑉 = ⋃ 𝑉𝑡
𝑇
𝑡=0 , 𝑉𝑖 ∩ 𝑉𝑗 = ∅ ∀𝑖 ≠ 𝑗 

• 𝑒 ∈ 𝐸 can only go from 𝑉𝑡 to 𝑉𝑡+1 

• Input layer: 𝑉0 

• Output layer: 𝑉𝑇 

• Hidden layers: 𝑉𝑡, 0 < 𝑡 < 𝑇 

• Depth: 𝑇 

• Size: |𝑉| 

• Width: max
t

|𝑉𝑡| 

for binary classification and regression (1 variable): output layer has 1 node 
 
Architecture: (𝑽, 𝑬, 𝝈) 

NN represent a function: ℎ𝑉,𝐸,𝜎,𝑤: ℝ|𝑉0|−1 → ℝ|𝑉𝑇| 

Hypothesis Set: 𝐻𝑉,𝐸,𝜎 = {ℎ𝑉,𝐸,𝜎,𝑤: 𝑤 is a mapping from 𝐸 to ℝ} 

 
Expressiveness of NN:  every Boolean function can be implemented using a neural network of depth 
2. NNs are universal approximators. But it’s very big. 
With 𝜎 = 𝑠𝑖𝑔𝑛: 

• Depth 2 (1 hidden layer): Intersections of halfspaces 
 
 

• Depth 3 (2 hidden layers): Union of intersections of halfspaces 
 
  

Sample Complexity: quantity of data needed to learn with NN. 

• VC-dim of 𝐻𝑉,𝐸,𝑠𝑖𝑔𝑛 = 𝑂(|𝐸| log|𝐸|) 

• VC-dim of 𝐻𝑉,𝐸,𝑠𝑖𝑔𝑚𝑜𝑖𝑑 = 𝑂(|𝑉|2|𝐸|2) 

Large NNs require a lot of data. 
 
Runtime of Learning: applying the ERM rule with respect to 𝐻𝑉,𝐸,𝑠𝑖𝑔𝑛is NP hard. 

So, we train NN using Stochastic Gradient Descent. 
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11.2. Learning NN 
 
Matrix notation: 

 

  

 
Forward propagation: 
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Learning the weights 𝑤𝑖𝑗
(𝑡)

 

By minimizing the training error 𝐿𝑆(ℎ) =
1

𝑚
∑ 𝑙(ℎ, (𝒙𝑖, 𝑦𝑖))

𝑚
𝑖=1  with SGD 

Update rule: 𝒘(𝑡) ← 𝒘(𝑡) − 휂𝛻𝐿𝑆(𝒘
(𝑡)) 

where 𝛻𝐿𝑆(𝒘
(𝑡)) is the gradient 

∀𝑡: 
𝜕𝐿𝑆

𝜕𝒘(𝑡)
=

1

𝑚
∑

𝜕𝑙(ℎ, (𝒙𝑖, 𝑦𝑖))

𝜕𝒘(𝑡)

𝑚

𝑖=1

 

 

Sensitivity vector for layer 𝑡: 𝛿(𝑡) =
𝜕𝑙

𝜕𝒂(𝑡) =

[
 
 
 
 

𝜕𝑙

𝜕𝑎𝑡,1

⋮
𝜕𝑙

𝜕𝑎
𝑡,𝑑(𝑡)]

 
 
 
 

= [

𝛿1
(𝑡)

⋮

𝛿
𝑑(𝑡)

(𝑡)
] 

quantify how the training error changes with 𝒂(𝒕) (the inputs to the 
𝑡 layer - before the nonlinear transformation) 

𝛿𝑗
(𝑡) = 𝜎′(𝑎𝑡,𝑗) ∑ 𝑤𝑗𝑘

(𝑡+1)
𝛿𝑘

(𝑡+1)

𝑑(𝑡+1)

𝑘=1

 

where 𝛿(𝑇) =
𝜕𝑙

𝜕𝒂(𝑡) (sensitivity of final layer depends on the loss L used) and 𝜎′ is the derivative of 

activation function. 
 

Compute sensitivities 𝛿(𝑡) ∀𝑡 given a datapoint (𝒙𝑖, 𝑦𝑖): 

 

 
 
Regularized NN: To prevent overfitting. Introduces the hyperparameter 𝝀 

Minimize 𝐿𝑆(ℎ) +
𝜆

2
∑ (𝑤𝑖𝑗

(𝑡))
2

𝑖,𝑗,𝑡           (squared weight decay regularizer) 
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General construction of NN for a given Boolean formula:  
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11.3. Convolutional Neural Networks 
 

 
 
Traditional NN requires a huge number of edges and the domain structure is not taken into account. 
 
CNN: Are neural networks that use convolution in place of general matrix multiplication in at least 
one of their layers. 
 
Prodotto di Convoluzione 2D: ogni cella della matrice risultante è data dalla somma dei prodotti 
elemento per elemento sovrapponendo la matrice filtro alla matrice di ingresso + bias (1 solo bias 
per filtro). 

 
𝑜𝑢𝑡1,1 = ((0 ∗ 0) + (1 ∗ 1) + (3 ∗ 2) + (4 ∗ 3)) + 𝑏 = 19 + 𝑏 

𝑺(𝒊, 𝒋) = (𝑰 ∗ 𝑲)(𝒊, 𝒋) = ∑ ∑ 𝑰(𝒊 + 𝒎, 𝒋 + 𝒏)𝑲(𝒎,𝒏)𝒏𝒎  where 𝐼 is 2d input and 𝐾 is 2D function 
(kernel) 
Convolution Properties: 

• sparse interactions: many edges do not exist in the network 

• parameter sharing: using the same parameter for more than one function in a model. 

• equivariant representations. 
 
After a convolutional layer: 

• nonlinear function: ReLU (Rectified Linear Unit) 

• pooling layer, often combined with subsampling 
 
ReLU (rectified linear unit) 𝜎(𝑧) = max{0, 𝑧} 

• Helps convergence (almost linear) 

• Does not hurt expressiveness 

• Prevent the vanishing gradient issue (for sigmoid, gradient can be 0 and so weights do not 
change) 
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Pooling function: replaces the output of the network at a certain location with a summary statistic 
of the nearby outputs. 

• max pooling: pick the maximum of the region 

• average pooling: pick the average of the region 
Max pooling introduces invariance to local translation: many neurons have the same output value 
even if input values are “shifted” a bit. Useful if we care more about whether some feature is present 
than exactly where it is or how it appears. 

 
 
Subsamplig (stride): Invece di fare 1 passo se ne fanno di più. Non viene fatto il prodotto se il filtro 
va fuori dal bordo. 
Reduce the size of the representation. 
 
Pooling and subsampling have some nice properties: 

• almost scale invariant representation 

• makes the input representations (feature dimension) smaller and more manageable 

• reduces the number of parameters => controls overfitting 

• reduces computation 
 
CNN Last Layer: fully connected NN, which learns from the features extracted at the previous hidden 
Layers. 
 
ADAM (Adaptive Moment Estimation Iterative method) 
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11.4. Techniques to Help Avoiding Overfitting 
Regularization! (same as for other models!), dropout, early stopping, data augmentation 
 
Dropout: method of regularizing a broad family of models. 

 
 
Dropout 
Usato quando si ha un training set piccolo. Aspetto negativo è che la cost function non è più ben 
definita. Ogni layer ha associata una probabilità di eliminare i suoi nodi, se ne eliminano e si ripete 
per ogni esempio. Quindi ogni esempio ha associata una rete diversa, che viene allenata. 
Non si usa drop out sul test set. 
The idea behind drop-out is that at each 
iteration, you train a different model that 
uses only a subset of your neurons. With 
dropout, your neurons thus become less 
sensitive to the activation of one other 
specific neuron, because that other neuron 
might be shut down at any time. 
 
Early Stopping: Use validation error to decide when to stop training. Stops when loss has not 
improved after 𝑛 subsequent epochs. Parameter 𝑛 is called patience 
 
Data Augmentation:  
Quando il dataset ha pochi dati, si può utilizzare qualche trucco per aumentarli. 
Esempi: 

• Mirroring 

• Random cropping 

• Less common (perhaps due to their complexity): Rotation, Shearing (3D rotation), Local 
warping 

• Color shifting (R +20, G -20, B +20) 
 
Loss Function: 

Classification: cross entropy (instead of 0-1 loss) 𝑙(ℎ, (𝒙, 𝑦)) = −𝑦 log ℎ(𝒙) − (1 − 𝑦) log(1 −

ℎ(𝒙)) 

• is a convex function, SGD works better 

• best hypothesis ℎ(𝒙) = Pr[𝑦 = 1|𝒙] 

• Hypotheses set: functions with (prediction) value in 0 and 1. use sigmoid activation function 
for output. 
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Multiclass classification: 𝑘 classes (0, 1, . . . , k) 

• output is vector 𝒚 with 𝑦𝑖 = 1 if correct class is 𝑖, 0 otherwise 

• ℎ(𝒙) ∈ (0,1)𝑑 with ℎ𝑖(𝒙) = probability label of 𝒙 is 𝑖 

• 𝑙(ℎ, (𝒙, 𝒚)) = −∑ 𝑦𝑖 log ℎ𝑖(𝒙)𝑘
𝑖=𝑘  

Regression: squared loss 
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12. Clustering 
 
Unsupervised Learning: We have the input features 𝑋, but we do not have the labels 𝑦. 
We are interested in finding some interesting structure in the data, or, equivalently, to organize it 
in some meaningful way. 
 
Clustering: task of grouping a set of objects such that similar objects end up in the same group and 
dissimilar objects are separated into different groups. 
Problems: 

• Similarity (or proximity) is not a transitive relation: Example, sequence of objects, 𝑥1, … , 𝑥𝑚 
such that each 𝑥𝑖  is very similar to its two neighbors, 𝑥𝑖−1 and 𝑥𝑖+1, but 𝑥1 and 𝑥𝑚 are very 
dissimilar. 

• Lack of “ground truth”: a given set of objects can be clustered in various different 
meaningful ways. 

 
Model for Clustering: 

• Input: 𝑋 and 𝑑 
o set of elements 𝑋 
o distance function 𝑑: 𝑋 × 𝑋 → ℝ+ symmetric 

▪ 𝑑(𝑥, 𝑥) = 0 ∀𝑥 
▪ often satisfy the triangle inequality: 𝑑(𝑥, 𝑥′) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑥′) 

o OR similarity function 𝑠: 𝑋 × 𝑋 → ℝ+ symmetric 
▪ 𝑠(𝑥, 𝑥) = 1 ∀𝑥 

o Additionally, 𝑘: number of clusters 

• Output: partition of 𝑋 𝐶 = (𝐶1, … , 𝐶𝑘) 

o ⋃ 𝐶𝑖
𝑘
𝑖=1 = 𝑋 

o ∀𝑖 ≠ 𝑗: 𝐶𝑖 ∩ 𝐶𝑗 = ∅ 

o (sometimes) dendrogram 
 
Classes of Algorithms for Clustering: 

• Cost minimization algorithms 

• Linkage-based algorithms 
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12.1. Cost Minimization Clustering 
Approach: 

• Define a cost function over possible partitions of the objects 

• find the partition (=clustering) of minimal cost 
Assumptions: 

• Datapoints 𝒙 ∈ 𝑋 come from a larger space 𝑋′, often 𝑋 ⊆ 𝑋′ = ℝ𝑑 

• A distance function between each pair of datapoints is defined. 
 
Data is partitioned into disjoint sets 𝐶1, … , 𝐶𝑘 where each 𝐶𝑖 is represented by a centroid 𝜇𝑖 
Objective(cost) functions:  

• k-means: min
μ1,…,𝜇𝑘∈𝑋′

∑ ∑ 𝑑(𝒙, 𝜇𝑖)
2

𝒙∈𝐶𝑖

𝑘
𝑖=1  measures the squared distance between each point 

in 𝑋 to the centroid of its cluster. 

• k-medoids: min
μ1,…,𝜇𝑘∈𝑋

∑ ∑ 𝑑(𝒙, 𝜇𝑖)
2

𝒙∈𝐶𝑖

𝑘
𝑖=1  requires the cluster centroids to be members of 

the input set (𝑋 not 𝑋′). 

• k-median: min
μ1,…,𝜇𝑘∈𝑋

∑ ∑ 𝑑(𝒙, 𝜇𝑖)𝒙∈𝐶𝑖

𝑘
𝑖=1  

 
To solve K-Means: 

• brute force (NP-Hard): Try all possible partitions of the 𝑚 points into 𝑘 clusters, evaluate 

each partition, and find the best one. 𝑂 (
𝑘𝑚

𝑘!
) 

• Lloyd's Algorithm 𝑂(𝑡𝑘𝑚𝑑), where 𝑡=#of iterations, 𝑚=#datapoints 

 
Common Stop conditions (convergence): 

• The 𝑘-means objective for the cluster at iteration 𝑡 is not lower than the 𝑘-means 
objective for the cluster at iteration 𝑡 − 1. (Always terminates with this condition) 

                    
In practice it stops after just 𝑚 iterations. 
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To improve the results of k-means it is often recommended to repeat the procedure several times 
with different randomly chosen initial centroids (e.g., we can choose the initial centroids to be 
random points from the data). 
 
Kmeans++: provides a good solution, but it’s used to initialize centers in Lloyd’s. 
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12.2. Linkage-Based Clustering 
 
Algorithm: 

• Each data point is a single-point cluster. 

• Then, repeatedly merge the “closest” clusters of the previous clustering. 
Parameters: 

• Distance between clusters, commons: 
o Single linkage: 𝐷(𝐴, 𝐵) = min{𝑑(𝒙, 𝒙′): 𝒙 ∈ 𝐴, 𝒙′ ∈ 𝐵} minimum distance between 

members of the two clusters. 

o Average linkage: 𝐷(𝐴, 𝐵) =
1

|𝐴||𝐵|
∑ 𝑑(𝒙, 𝒙′)𝒙∈𝐴,𝒙′∈𝐵  average distance between a 

point in one of the clusters and a point in the other 
o Max Linkage: 𝐷(𝐴, 𝐵) = max{𝑑(𝒙, 𝒙′): 𝒙 ∈ 𝐴, 𝒙′ ∈ 𝐵} maximum distance between 

their elements 

• Termination condition, common: 
o Fixed number of clusters 𝑘: stop merging clusters as soon as the number of clusters 

is 𝑘. 
o Distance upper bound: Stop merging as soon as all the between-clusters distances 

are > 𝑟. 
o all points are in a cluster => output is a dendrogram 

Dendrogram: tree with input points 𝒙 ∈ 𝑋 as leaves, shows the arrangement/relation between 
clusters. 

 
Finding the Optimal Number of Clusters 

• Run the algorithm for various values of 𝑘 

• Use a score 𝑆 to evaluate each clustering 

• Pick the value of 𝑘 that has the maximum score.  

Silhouette Coefficient: 𝑠(𝒙) =
𝐵(𝒙)–𝐴(𝒙)

𝑚𝑎𝑥(𝐴(𝒙),𝐵(𝒙))
 measures if 𝒙 is closer to points in its “nearest cluster” 

than to the cluster it is assigned to. 

• 𝐴(𝒙) =
∑ 𝑑(𝒙,𝒙′)𝒙′≠𝒙,𝒙′∈𝐶(𝒙)

|𝐶(𝒙)|−1
 is the mean distance to the other instances in the same cluster 

• 𝐵(𝒙) = min
𝐶𝑖≠𝐶(𝒙)

𝑑(𝒙, 𝐶𝑖) is the mean nearest-cluster distance, that is the mean distance to 

the instances of the next closest cluster. 

Silhouette Score: 𝑆(𝐶) =
∑ 𝑠(𝒙)𝒙∈𝑋

|𝑋|
      the higher, the better the clustering quality. 

 
Clustering for Predictions: 

• goal: find centers to be used as representatives for predictions 

• label of center = most frequent label in its cluster 

• to predict label for a new point 𝒙 predict the most frequent label of the labels of the 𝑘 
centers that are closest to 𝒙 (K-nearest neighbors) 

• choice of 𝑘: cross-validation 
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13. Dimensionality Reduction - PCA 
 
Change of Basis: ….. 
 
Dimensionality reduction is the process of taking data in a high dimensional space and mapping it 
into a new space whose dimensionality is much smaller. 
The reduction is performed by applying a linear transformation to the original data. 
Find a good 𝑟-dimensional representation of 𝐷, with 𝑟 ≪ 𝑑 
 
Given a base 𝒖𝟏, … , 𝒖𝒅 ∈ ℝ𝑑  we consider the first 𝑟 basis vectors 𝒖𝟏, … , 𝒖𝒓 and project 𝒙  on those. 

𝒙′ = ∑𝑎𝑖𝒖𝑖

𝑟

𝑖=1

= [𝒖𝟏 …𝒖𝒓] [

𝑎1

⋮
𝑎𝑟

] = 𝑈𝑟𝒂𝒓 ∈ ℝ𝑑 

𝒂𝒓 = 𝑈𝑟
𝑇𝒙 

𝒙′ = 𝑈𝑟𝑈𝑟
𝑇𝒙 = 𝑃𝑟𝒙 

Projection matrix 𝑃𝑟 = 𝑈𝑟𝑈𝑟
𝑇, symmetric, 𝑃𝑟

2 = 𝑃𝑟 

Error vector 휀 = ∑ 𝑎𝑖𝒖𝑖
𝑑
𝑖=𝑟+1 = 𝒙 − 𝒙′, orthogonal to 𝒙′ 

 
Principal Component Analysis (PCA): seeks a 𝑟-dimensional basis that best captures the variance in 
the data. Identifies the hyperplane that lies closest to the data, and then it projects the data onto 
it. 
1° principal component = direction with largest projected variance 
2° principal component = orthogonal direction with largest projected variance 
… 

 
 
Data is given in a matrix 𝐷, where 𝑖-th row = vector 𝒙𝑖 ∈ ℝ𝑑 and is centered (mean=0) 
Computing the principal components: 

• compute the (sample) covariance matrix of (centered) data Σ = 𝐷𝑇𝐷 

• compute eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆𝑑 ≥ 0 of Σ 

• Let 𝒖𝟏, … , 𝒖𝒅 are the eigenvectors associated to the eigenvalues 

• The principal components are the first 𝑟 eigenvectors 𝒖𝟏, … , 𝒖𝒓 
 

Projected Variance var(𝐴) =
1

𝑚
∑ ‖𝒂𝒊 − 𝟎‖2𝑚

𝑖=1 =
1

𝑚
∑ 𝒙𝒊

𝑻𝑃𝑟𝒙𝒊
𝑚
𝑖=1 = ⋯ = ∑ 𝜆𝑗

𝑟
𝑗=1  where 𝐴 is the 

dataset projected 

Mean Squared Error (MSE) for PCA:  MSE = var(𝐷) − var(𝐴) = ∑ 𝜆𝑗
𝑑
𝑗=1 − ∑ 𝜆𝑗

𝑟
𝑗=1  

PCA finds the basis of 𝑟 vectors that minimizes MSE 
 

Choice of 𝒓: Pick smallest 𝑟 such that 𝑓(𝑟) =
∑ 𝜆𝑖

𝑟
𝑖=1

∑ 𝜆𝑖
𝑑
𝑖=1

≥ 𝛼 (usually 𝛼 ≥ 0.9) 
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Review-Questions 
 
Those questions are not taken from exams, they are made by me just to study, but they turn out 
to be pretty effective. 
You can study them for free in flashcard format at: https://www.brainscape.com/p/3YF5P-LH-
B89RE  
 
Chapter 2 - A gentle start 

• What are the 6-key point of the Formal Model? What is the loss function? Draw the 
learning process. 

• Define the training error and the ERM paradigm. 

• ERM with inductive bias and finite hypothesis classes. 

• (Simplied) PAC learning. With proof. 
Chapter 3 - A formal model 

• What is PAC learnability? 

• What is sample complexity and what is its value for the PAC? 

• What is Agnostic PAC learning? What are its empirical and true error? 

• What is the Bayes optimal predictor? 

• Definition of Agnostic PAC learnability. 

• What is the general loss function? general risk function? general empirical risk? 

• What are some common loss functions? 

• What is Agnostic PAC Learning (for generalized loss functions)? 
Chapter 4 - Uniform Convergence 

• What is an e-representative training set? 

• When ERM return a good hypothesis? 

• When do we have uniform convergence? 

• Which hypotheses classes have uniform convergence? 

• What about finite H classes? 
Chapter 5 - Bias tradeoff (slide 7) 

• What the no free lunch theorem states? Informally and Formally.  

• When H is not PAC learnable? How to avoid those failing distributions? How do we choose 
H? 

• How we decompose the error? 

• What is the bias complexity tradeoff? 

• How can we estimate the generalization error? 
Chapter 9 - Linear models 

• Definition of Linear (affine) functions and its hypothesis classes. And equivalent notation. 

• Halfspaces: 
o Definition of halfspace. When it is used? 
o When data are linearly separable? 
o Perceptron for halfspaces. When the algorithms stop? 

• Linear regression: 
o What is, hypothesis class, loss function and empirical risk. 
o What is least squares? 
o How to find the solution of the ERM problem? What if the matrix is not invertible? 

(slide 8.4-11) 

https://www.brainscape.com/p/3YF5P-LH-B89RE
https://www.brainscape.com/p/3YF5P-LH-B89RE
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• Logistic regression: 
o What is? For what is used for? 
o What is its hypothesis class? 
o What are the differences with halfspaces? 
o What is the loss function? 
o What is the ERM problem? how can be solved? 

Statistics: (Slide 9) 

• What is a confidence interval? How it should be? 

• What is MLE? (UML 24.1) 

• How to find the MLE of 휃? 

• How is the smallest confidence set for 휃? 
Chapter 6 - VC dimension: 

• What is the goal? 

• What is the Restriction of H to C? What is shattering? Definition of VC-dimension of H 

• What are the VCdim of Threeshold function, intervals, Axis aligned rectangles, Convex set,  

• What The Fundamental Theorems of Statistical Learning states? 

• When H is not pac learnable? 

• If H is the class of halfspaces, VCdim=? (Dim) 
Chapter 11 - Model Selection and Validation 

• What is Model selection? What are the 2 approaches and their basic idea? 

• Validation. What if V is large? How it is validation compared to VcDim? 

• How does validation for model selection works? What the model selection curve plots? 

• how can we estimate the true risk after model selection? Train-Validation-Test Split (slide 
12.1) 

• How k cross validation work? And for why is used? 

• How to improve a model (what if learning fails)? 
Chapter 13 - Regularization and Stability 

• What is RML? What does? 

• What is thikonov regularization function 

• Ridge regression, derivation of optimal solution 

• Fitting-Stability Tradeoff. How to pick 𝜆?  

• L1, LASSO; LASSO vs Ridge Regression. 
Chapter 25 - Feature selection (25.1.2) 

• What is feature selection? Why we use it? 

• How Subset Selection works? Algorithm with training and with validation. 

• How Forward Selection works? Algorithm with training and with validation. 

• How Backward Selection works? Algorithm with training and with validation. 
Chapter 15 - SVM 

• When a training set is linearly separable? What is a margin? What is Hard-SVM? Equivalent 
formulations. 

• How Soft-SVM works? Optimization problem, hinge formulation, homogeneous halfspaces. 

• How to solve Soft-SVM? What is gradient descent? What is SGD? How to use SGD to solve 
Soft-SVM? 

• What is the dual problem for hard-SVM? When we use this notation? 

• How we can use SVM if we have non linearly separable data? 

• What are the 2 issues generated by this procedure? How we can solve it? 
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• What is a kernel function? What is the kernel trick? (slide 16.8, 16.10) What are the most 
common kernels? How do we choose the kernel? What the mercer condition says? 

• How to use SVM for regression? What is the function to minimize? What is the final model 
produced? 

Chapter 20 - Neural networks 

• What is a neuron? What is an activation function? What are the most common? What is 
the hypothesis class of a NN? 

• What type of functions can be implemented using a neural network? Sample complexity. 
What is the runtime of learning a nn? What is the solution? 

• Matrix notation. Forward propagation algorithm. 

• How do we learn the parameters? 

• What is a sensitivity vector? 

• Backpropagation algorithm 

• How we can regularize NN? 

• What are the issues of traditional NN? 

• What are CNN? 

• How the Convolutional product works? What are its properties? 

• What is padding? Relu? Pooling? 

• How LeNet works? 

• What is ADAM? How it works? 

• What are the techniques to avoid overfitting? And how they works? 

• What are RNN? 

• Why DeepLearning works? 
Chapter 22 - Clustering 

• What is clustering (definition)? 

• What are the difficulties of clustering? 

• Model for clustering 

• What are the 2 Classes of Algorithms for Clustering? 

• Cost Minimization Clustering 
o What are the 3 main objective functions? 
o What is a brute force algorithm to sole K-means? What is its problem? 
o Lloyd’s Algorthm, its convergence criteria, its complexity.  

• Linkage-Based Clustering 
o How the algorithm works? 
o What are the 2 parameters that it needs? 
o What is a dendrogram? What it represents? 

• How can we choose the number k of clusters? What is and how Silhouette works? 
Chapter 23 - Dimensionality Reduction 

• What is dimensionality reduction? 

• What is PCA? 

• How to compute the principal components? 

• What does PCA on the projected dataset? 

• How to choose the number of components? 
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