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1. Introduction 
 
One of the main goals of theoretical computer science is the mathematical study of computation 

• computability : what can be computed? 

• tractability : what can be efficiently computed? 
The mathematical study of computation requires 

• abstract models of computation : automata theory 

• abstract representations of problems/data : formal language theory 
 

1.1. Introduction to finite automata 
 
Finite Automata (FA): finite set of states with transitions from one state to another. 
Representation with a graph where: 

• Nodes: represent states 

• Arcs: represent transitions 

• Labels: on each arc indicate what is causing the transition 
 
Recognition model: it takes as input a sequence (string) and either accepts or rejects. Ex. FA. Are 
operational. 
Generative model: generates all the desired sequences (no input). Ex. grammars, regular 
expressions. Are declarative. 
 

1.2. Formal proof techniques 
 

1.2.1. Deductive 
If 𝑯, then 𝑪    H=hypothesis(true/false), C=conclusion 

• H is a sufficient condition for C 

• C is a necessary condition for H 

• Also written as C if H 
Insiemistic interpretation: 

 
𝐻 ⇒ 𝐶 is equivalet to 𝐻 ⊆ 𝐶: if 𝐻 is true, 𝐶 can’t be false 

 
Deduction: Sequence of statements that starts from one or more hypotheses and leads to a 
conclusion 
Each step of the deduction uses some logical rule, applying it to the hypotheses or to one of the 
previously obtained statements 
Modus ponens: logical rule to move from one statement to the next. If we know that “if H then C” 
is true, and if we know that H is true, then we can conclude that C is true. 
 
𝐶1 if and only if 𝐶2 
require proofs for both directions 

• if 𝐶2 then 𝐶1 

• if 𝐶1 then 𝐶2 
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Additional techniques 

• Reduction to definitions: Convert all terms in the assumptions using the corresponding 
definitions 

• Proof by contradiction: To prove “if H then C", prove “H and not C implies falsehood" 

• Counterexample: to prove that a theorem is false it is enough to show a case in which the 
statement is false 

 
Quantifiers: 

• For each 𝑥 (∀𝑥): applies to all values of the variable 

• Exists 𝑥 (∃𝑥): applies to at least one value of the variable 
The ordering or the quantifiers affect the meaning of the statement 
 
Set Equality: To prove 𝐸 = 𝐹 we have to prove both 𝐸 ⊆ 𝐹 and 𝐹 ⊆ 𝐸 

• if 𝑥 is in 𝐸 then 𝑥 is in 𝐹 

• if 𝑥 is in 𝐹 then 𝑥 is in 𝐸 
 
Contrapositive (modus tollens): The statement “if H then C" is equivalent to the statement “if C is 
false then H is false". Proof of equivalence uses truth table. 
 

1.2.2. Induction 
Inductive proof: used with objects defined recursively 
 
Induction on integers: we need to prove statement 𝑆(𝑛), for non-negative integer numbers 𝑛 

• in the base case we show 𝑆(𝑖) for some specific integer 𝑖 (usually 𝑖 = 0 or 𝑖 = 1). Or a finite 
number of cases. 

• in the inductive step, for 𝑛 ≫ 𝑖 prove statement “if 𝑆(𝑛) then 𝑆(𝑛 + 1)“ 
We can then conclude that 𝑆(𝑛) is true for every 𝑛 ≫ 𝑖, where 𝑖 is the base case. 
We can extend the inductive step and demonstrate for a certain k ¡ 0 : \if Spn  kq, Spn  k  1q, ..., 
Spn  1q, Spnq then Spn  1q" 
 
Structural induction: 
To prove theorems for structure X which is recursively defined: 

• show the statement for the base case of the definition of X 

• show the statement for X on the basis of the same statement holding for the subparts of X, 
according to X's definition 

 
Mutual Induction 
Sometimes it is not possible to prove a statement 𝑆1(𝑛) by induction, because the statement 
depends on statements 𝑆2(𝑛),… , 𝑆𝑘(𝑛) of different types 
We then need to prove jointly a family of statements 𝑆1(𝑛),… , 𝑆𝑘(𝑛) by mutual induction on 𝑛 
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1.3. Basic concepts of automata theory 
 
Alphabet 𝚺: finite and nonempty set of atomic symbols 

• Σ = {0,1} binary 
 

String: finite sequence of symbols from some alphabet 
Empty string 𝝐: composed of 0 symbols. Can be chosen from each alphabet. 
Length |𝒘|: Number of occurrences (standpoints) for the symbols in the string. 
Concatenation: 𝑥𝑦 

• 𝑥𝜖 = 𝜖𝑥 = 𝑥 
 

Powers of an alphabet 𝚺𝐤: is the set of all k-length strings with symbols from Σ 

• Σ = {0,1} 
• Σ1 = {0,1} 
• Σ2 = {00, 01, 10, 11} 
• Σ0 = {𝜖} for each alphabet 

• Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ … 
• Σ+ = Σ1 ∪ Σ2 ∪ … 
• Σ∗ = Σ+ ∪ {𝜖} 

 
Language 𝑳: set of strings arbitrarily chosen from Σ∗ 

• 𝐿 ⊆ Σ∗ is a language 

• Extensive representation: 𝐿 = {𝜖, 01,0011,… } 

• Intensive representation: 𝐿 = {𝑤|statement specifying 𝑤} 
 
Let 𝑃(𝑥) be a predicate expressing some mathematical property of element 𝑥 
Decision problem associated with 𝑃: on input x, decide whether 𝑃(𝑥) holds true. 
Associated formal language: 𝐿𝑃 = {𝑥|𝑃(𝑥) holds true} 
Can be reformulated as: Given as input an element 𝑥 (viewed as a string), 𝑥 ∈ 𝐿𝑃? 
 
Many mathematical problems are not decision problems, but require instead a computation that 
constructs an output result. Solving a general (non-decision) problem cannot be simpler than solving 
the associated decision problem. 
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2. Finite Automata 
 

2.1. Deterministic finite automata (DFA) 
Read input from left to right. They can only store a limited quantity of information. 
 
Definition: 𝑨 = (𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭) 

• 𝑄: finite set of states 

• Σ: finite set of input symbols 

• 𝛿: transition function 𝑄 × Σ → 𝑄 

• 𝑞0 ∈ 𝑄: initial state 

• 𝐹 ⊆ 𝑄: set of final states 
 
Notations: 

• Transition table: 
o rows: states 
o columns: input alphabet symbols 
o Arrow: Start State 
o asterisks: final states 

• Transition Diagram: 
o Node: state 
o Arc: 𝛿(𝑞, 𝑎) 
o Strat arrow on 𝑞0 
o Final states: nodes with double circle 
o #states*#alphabet_symbols = #arrows 
o For each state there must be #outgoing_arcs=Σ 

 
Acceptance of a string 𝑤 = 𝑎1𝑎2…𝑎𝑛: 𝛿(𝑞𝑖−1, 𝑎𝑖) = 𝑞𝑖, if 𝑞𝑛 ∈ 𝐹 then 𝑎1𝑎2…𝑎𝑛 is accepted. 
Or if there is a path in the transition diagram that starts in the initial state, ends in a final state and 
has a sequence of transitions with labels 𝑎1𝑎2…𝑎𝑛 
 

Extended transition function �̂�: operates on entire strings 

• Base: 𝛿(𝑞, 𝜖) = 𝑞 

• Induction: 𝛿(𝑞, 𝑥𝑎) = 𝛿(𝛿(𝑞, 𝑥), 𝑎) 

𝑎 is the last symbol of 𝑤 
 

Language accepted by DFA 𝐿(𝐴) = {𝑤|𝛿(𝑞0, 𝑤) ∈ 𝐹} set of strings 𝑤 that starting from the initial 

state reach one of the final states. 
Those languages are called regular languages. 
 
Prove that an automaton 𝑨 accept the language 𝑳. Prove that 𝐿 = 𝐿(𝐴). Mutual induction. 

• Define a family of properties 𝑃𝑞, one for each state 𝑞 of 𝐴. (∀𝑥 ∈ Σ∗, 𝑃𝑞𝑖(𝑥) ℎ𝑜𝑙𝑑𝑠 𝐼𝐹𝐹 …) 

• Prove that, for each property 𝑃𝑞: ∀𝑥 ∈ Σ∗, 𝑃𝑞𝑖(𝑥) holds IFF 𝛿(𝑞0, 𝑥) = 𝑞𝑖  

This means that 𝑃𝑞𝑖(𝑥) is true iff, starting from the initial state and reading 𝑥, we reach 𝑞𝑖. 

• Proof IF 𝑃𝑞𝑖(𝑥) THEN 𝛿(𝑞0, 𝑥) = 𝑞𝑖: 

o base: |𝑥| = 0. This implies that 𝑥 = 𝜖. So 𝑃𝑞𝑖(𝜖) holds. We can write �̂�(𝑞0, 𝑥) = 𝑞𝑖  
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o Induction: |𝑥| = 𝑛 > 0. 
▪ If 𝑃𝑞𝑖(𝑥) is false, then the implication is true. 

▪ If 𝑃𝑞𝑖(𝑥) is true, then 𝑥 = 𝑤𝑎, assume w correct, apply the inductive 

hypotheses, we can write 𝛿(𝑞0, 𝑥) = 𝛿(𝛿(𝑞0, 𝑤), 𝑎) = 𝛿(𝑞𝑖.., 𝑎) = 𝑞𝑖 

• Proof IF 𝛿(𝑞0, 𝑥) = 𝑞𝑖  THEN 𝑃𝑞𝑖(𝑥): 

o base: |𝑥| = 0. This implies that 𝑥 = 𝜖. So 𝛿(𝑞0, 𝜖) = 𝑞0 true, 𝑃𝑞𝑖(𝑥) true, so the 

implication is true. (If 𝛿(𝑞0, 𝜖) = 𝑞𝑖  false then the implication is true) 
o Induction: |𝑥| = 𝑛 > 0. 

▪ If 𝑃𝑞𝑖(𝑥) is false, then the implication is true. 

▪ If 𝑃𝑞𝑖(𝑥) is true, then 𝑥 = 𝑤𝑎. …………………….????? 

 

2.2. Nondeterministic finite automata (NFA) 
Accept only regular languages. Easier to design than DFAs. Useful to search for a pattern in a text. 
Can simultaneously be in different states. 
Accepts if at least one final state is reached at the end of the scan of the input string. 
Equivalently, in a given state the automaton can “guess" which next state will lead to acceptance 
Can be seen as set of states that exists simultaneously, and when a new character is read each state 
is updated. 

 

 
 
Definition: 𝑨 = (𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭) 

• 𝑄: finite set of states 

• Σ: finite set of input symbols 

• 𝛿: transition function 𝑄 × Σ → 2𝑄, where 2𝑄 is the set of all subsets of 𝑄 (power set) 

• 𝑞0 ∈ 𝑄: initial state 

• 𝐹 ⊆ 𝑄: set of final states 
 

Extended transition function �̂�: 

• Base: 𝛿(𝑞, 𝜖) = {𝑞} 

• Induction: 𝛿(𝑞, 𝑥𝑎) = ⋃ 𝛿(𝑝, 𝑎)𝑝∈�̂�(𝑞,𝑥)  

 
 

Language accepted by NFA: 𝐿(𝐴) = {𝑤|𝛿(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅} set of strings 𝑤 ∈ Σ∗ such that 𝛿(𝑞0, 𝑤) 

contains at least one final state. This means that at least one computation for 𝑤 leads to acceptance. 
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2.2.1. Equivalence DFA - NFA 
NFAs are easier than DFAs to program, since nondeterminism makes it possible to simplify the 
structure of the automaton. 
 
For every NFA 𝑁 there exist some DFA 𝐷 such that 𝐿(𝐷) = 𝐿(𝑁). Proof with subset construction. 
 
NFA to DFA with subset construction: 

• 𝑄𝐷 = set of subsets of 𝑄𝑁, for a total of 2𝑛 states. But a lot are not reachable so we can use 
lazy evaluation. 

• 𝐹𝐷 = {𝑆 ⊆ 𝑄𝑁|𝑆 ∩ 𝐹𝑁 ≠ ∅}, sets of states that contain at least an accepting state. 

• ∀𝑆 ⊆ 𝑄𝑁 and ∀𝑎 ∈ Σ: 𝛿𝐷(𝑆, 𝑎) = ⋃ 𝛿𝑁(𝑝, 𝑎)𝑝∈𝑆  

 
 
NFA to DFA with Lazy Evaluation: used to avoid writing all states 𝑄𝐷 

• Base: 𝑆 = {𝑞0} is accessible in 𝐷 

• Induction: if state 𝑆 is accessible in 𝐷, then it’s accessible also the state 𝛿𝐷(𝑆, 𝑎) ∀𝑎 ∈ Σ with 
𝛿𝐷(𝑆, 𝑎) = ⋃ 𝛿𝑁(𝑝, 𝑎)𝑝∈𝑆  

∅ is considered a single trap state if it appears as final unique solution of 𝛿𝐷(𝑆, 𝑎). If it appears with 
other it’s like it doesn’t exist. 
 
Partial DFA: it has at maximum 1 outgoing transition for each state in 𝑄 and for each symbol in Σ. 
It can be transformed in an DFA by adding some trap states: non-accepting states that have a 
transition on themselves. 
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2.2.2. Theorems 
Given 𝑁 = (𝑄𝑁, Σ, 𝛿𝑁 , 𝑞0, 𝐹𝑁), built 𝐷 = (𝑄𝐷 , Σ, 𝛿𝐷 , {𝑞0}, 𝐹𝐷) using subset construction, then 
𝐿(𝐷) = 𝐿(𝑁) 

 

 
 
Language 𝐿 is accepted by a DFA IIF 𝐿 is accepted by an NFA. 

 
 
Unlucky case: there exist a NFA 𝑁 with 𝑛 + 1 states that has no equivalent DFA with less than 2𝑛 
states. 
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2.3. 𝜺-NFA 
NFA with special moves that do not consume the input. 
They accept all and only the regular languages. 
Easier to design than NFAs. 
Same notation of NFA but with Σ ∪ {𝜀} 
 
𝜺-closure of a state 𝑞, ECLOSE(𝑞): states reachable from 𝑞 through a sequence of 𝜀 

• Base: 𝑞 ∈ ECLOSE(𝑞) 

• Induction: (𝑝 ∈ ECLOSE(𝑞) and 𝑟 ∈ 𝛿(𝑝, 𝜖)) ⇒ 𝑟 ∈ ECLOSE(𝑞) 

𝜺-closure of a set of states: ECLOSE(𝑆) = ⋃ ECLOSE(𝑞)𝑞∈𝑆  

 
 

Extended transition function �̂�: 

• Base: 𝛿(𝑞, 𝜀) = ECLOSE(𝑞) 

• Induction: �̂�(𝒒, 𝒙𝒂) = 

o {𝒑𝟏, … , 𝒑𝒌} = �̂�(𝒒, 𝒙) reachable states from 𝑞 through path 𝑥 

o {𝒓𝟏, … , 𝒓𝒎} = ⋃ 𝜹(𝒑𝒊, 𝒂)
𝒌
𝒊=𝟏  follow the transitions with label 𝑎 from the states that 

are reachebly from 𝑞 through paths labeled 𝑥 

o �̂�(𝒒, 𝒙𝒂) = ECLOSE({𝒓𝟏, … , 𝒓𝒎}) 

 

 

 
 

Language accepted by 𝜀-NFA: 𝐿(𝐸) = {𝑤|𝛿(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅}, set of strings 𝑤 that leads from the 

initial state to a final state. 
 
Translation 𝜺-NFA to DFA: 

• 𝑄𝐷 = {𝑆|𝑆 ⊆ 𝑄𝐸 , 𝑆 = ECLOSE(𝑆)} 
• 𝑞𝐷 = ECLOSE(𝑞0) 
• 𝐹𝐷 = {𝑆|𝑆 ∈ 𝑄𝐷 , 𝑆 ∩ 𝐹𝐸 ≠ ∅}, set of states that contains at least one final state 

• For each 𝑎 ∈ Σ, S ∈ QD compute 𝛿𝐷(𝑆, 𝑎): 
o 𝑆 = {𝑝1, … , 𝑝𝑘} 
o ⋃ 𝛿𝐸(𝑝𝑖, 𝑎) = {𝑟1, … , 𝑟𝑚}

𝑘
𝑖=1  

o 𝛿𝐷(𝑆, 𝑎) = ECLOSE({𝑟1, … , 𝑟𝑚}) 
Language 𝐿 accepted by 𝜀-NFA IIF 𝐿 accepted by DFA 
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3. Regular Expressions 
 
Are a declarative way of describing a regular language. 
 
Operations on languages: 

• Union: 𝐿 ∪ 𝑀 = {𝑤|𝑤 ∈ 𝐿 or 𝑤 ∈ 𝑀} 

• Concatenation: 𝐿.𝑀 = {𝑤|𝑤 = 𝑥𝑦, 𝑥 ∈ 𝐿, 𝑦 ∈ 𝑀} 

• Powers:  
o 𝐿0 = {𝜖} 
o 𝐿𝑘 = 𝐿. 𝐿𝑘−1 for 𝑘 ≥ 1 

• Klenee closure: 𝐿∗ = ⋃ 𝐿𝑖∞
𝑖=0  ???Strings formed by strings that belongs to L???? 

Operators’ precedence: closure, concatenation, union (less important) 

 
 
Definition of regular expression 𝐸 and its generated language 𝐿(𝐸): 

• Base: 
o 𝜖 is a regular expression, and 𝐿(𝜖) = {𝜖} 
o ∅ is a regular expression, and 𝐿(∅) = ∅ 
o If 𝑎 ∈ Σ, then 𝒂 is a regular expression, and 𝐿(𝒂) = {𝑎} 

• Induction: If 𝐸 and 𝐹 are regular expressions, then 
o 𝐸 + 𝐹 is regular expression, and 𝐿(𝐸 + 𝐹) = 𝐿(𝐸) ∪ 𝐿(𝐹) 
o 𝐸𝐹 is regular expression, and 𝐿(𝐸𝐹) = 𝐿(𝐸)𝐿(𝐹) 

o 𝐸∗is regular expression, and 𝐿(𝐸∗) = (𝐿(𝐸))
∗
 

o (𝐸) is regular expression, and 𝐿((𝐸)) = 𝐿(𝐸) 

 
Tree structure of a regular expression:  
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To show that FA and regular expressions are equivalent, we will show that: 

• for each DFA 𝐴 there is a regular expression 𝑅 such that 𝐿(𝑅) = 𝐿(𝐴) 

• for each regular expression 𝑅 there is a 𝜖-NFA 𝐴 such that 𝐿(𝐴) = 𝐿(𝑅) 

 
 
Convert FA in Expressions by state elimination: 

• Replace arc labels with equivalent regular expressions (e.g. 0->0, 0,1->0+1) 

• Delete non-accepting and non-initial states with the Elimination process: for each state 𝑠 to 
remove, add on arcs 𝑝 → 𝑞 labels of paths 𝑝 → 𝑠 → 𝑞: +𝑷𝑺∗𝑸. (If there wasn’t recursion on 
state 𝑠 or there wasn’t the arc 𝑝 → 𝑞 (create it) add only +𝑃𝑄) 

           

 
• For each final state 𝑞: 

o Remove all states except 𝑞 and 𝑞0 with the elimination process. 
▪ If 𝑞 ≠ 𝑞0: 𝐸𝑞 = (𝑅 + 𝑆𝑈

∗𝑇)∗𝑆𝑈∗ 

 
▪ If 𝑞 = 𝑞0: 𝐸𝑞 = 𝑅

∗ 

 
• Final regular expression is the union (+): 𝐸 = ∑ 𝐸𝑞𝑞∈𝐹  
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Convert Regular Expression in 𝝐-NFA: 
For every regular expression 𝑅 we can construct an 𝜖-NFA such that 𝐿(𝐸) = 𝐿(𝑅) 
Proof: e construct 𝐸 with 

• only one final state 

• no arc entering the initial state 

• no arc exiting the final state 
Base: Automata for regular expressions 𝜖, ∅, 𝒂 

 
𝜖 ⇒ 𝐿 = {𝜖} 

 
∅ ⇒ 𝐿 = ∅ 

 
𝒂 ⇒ 𝐿 = 𝑎 

Induction: 

 

𝑅 + 𝑆 ⇒ 𝐿(𝑅) ∪ 𝐿(𝑆) 

 
𝑅𝑆 ⇒ 𝐿(𝑅)𝐿(𝑆) 

 

𝑅∗ ⇒ 𝐿(𝑅∗) 

 
 
Algebraic properties: 

• Union Commutative: 𝐿 +𝑀 = 𝑀 + 𝐿 

• Union Associative: (𝐿 + 𝑀) + 𝑁 = 𝐿 + (𝑀 + 𝑁) 

• Union Idempotent: 𝐿 + 𝐿 = 𝐿 

• Concatenation Associative: (𝐿𝑀)𝑁 = 𝐿(𝑀𝑁) (Not commutative) 

• Concatenation Distributive left: 𝐿(𝑀 + 𝑁) = 𝐿𝑀 + 𝐿𝑁 

• Concatenation Distributive right: (𝑀 + 𝑁)𝐿 = 𝑀𝐿 + 𝑁𝐿 

• Closure: 
o (𝐿∗)∗ = 𝐿∗ 
o ∅∗ = 𝜖 
o 𝜖∗ = 𝜖 
o 𝐿+ = 𝐿𝐿∗ = 𝐿∗𝐿 
o 𝐿∗ = 𝐿+ + 𝜖 
o 𝐿?= 𝜖 + 𝐿 

• ∅ ∪ 𝐿 = 𝐿 ∪ ∅ = 𝐿 
• 𝜖𝐿 = 𝐿𝜖 = 𝐿 
• ∅𝐿 = 𝐿∅ = ∅ Annihilator  
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4. Properties of Regular Languages 
 

4.1. Pumping Lemma 
Used to show that some languages are not regular. 
 
Let 𝐿 be any regular language. Then ∃𝑛 ∈ ℕ depending on 𝐿, ∀𝑤 ∈ 𝐿 with |𝑤| ≥ 𝑛, we can factorize 
𝑤 = 𝑥𝑦𝑧 with: 

• 𝑦 ≠ 𝜖 
• |𝑥𝑦| ≤ 𝑛 
• ∀𝑘 ≥ 0, 𝑥𝑦𝑘𝑧 ∈ 𝐿 

We can always find a non-empty string 𝑦, not too distant from the start of 𝑤, to replicate or delete 
without exiting from 𝐿. 
 
How to use it: 

• Suppose 𝐿 regular. Then ∃𝑛 ∈ ℕ… 

• Invent a 𝑤 ∈ 𝐿 with |𝑤| ≥ 𝑛. Make some symbols repeats 𝑛 times. 

• Decompose 𝑤 = 𝑥𝑦𝑧. Respecting 𝑦 ≠ 𝜖 and |𝑥𝑦| ≤ 𝑛 

• If I can choose a 𝑘 so that 𝑥𝑦𝑘𝑧 ∉ 𝐿, then the language is not regular. 
 

4.2. Closure properties 
Used to create complex automata starting from other languages. 
 
Returns Regular languages: 

• Union: 𝐿 ∪ 𝑀 (but split a regular in 2 can be not regular) 

• Intersection: 𝐿 ∩ 𝑀 
Intersection Automation: 𝐴 = (𝑄𝐿 × 𝑄𝑀, Σ, 𝛿𝐿∩𝑀, (𝑞𝐿 , 𝑞𝑀), 𝐹𝐿 × 𝐹𝑀) 

o States: pairs of states of 𝐴𝐿 and 𝐴𝑀 
o Initial state: pair of initial states of 𝐴𝐿 and 𝐴𝑀 
o Final states: pairs of finial states of 𝐴𝐿 and 𝐴𝑀, because the automata accept only if 

both automatons accept. 

o 𝛿𝐿∩𝑀((𝑝, 𝑞), 𝑎) = (𝛿𝐿(𝑝, 𝑎), 𝛿𝐿(𝑞, 𝑎)) 

 
• Complement: �̅� = Σ∗ − 𝐿 

• Difference: 𝐿 −𝑀  

• Inversion: 𝐿𝑅 = {𝑤𝑅|𝑤 ∈ 𝐿}  

• 𝐿∗ 
• Concatenation: 𝐿.𝑀 

• Homomorphism: ℎ(𝐿) = {ℎ(𝑤)|𝑤 ∈ 𝐿} function that substitute a symbol with a string. 

ℎ: Σ → Δ∗, ℎ(𝑤) = {
𝜖, 𝑤 = 𝜖

ℎ(𝑥)ℎ(𝑎), 𝑤 = 𝑥𝑎, 𝑥 ∈ Σ∗, 𝑎 ∈ Σ
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4.3. Conversion’s complexities, decide if 𝑳 = ∅ and if 𝒘 ∈ 𝑳 
 
Conversion’s complexities: (𝑛: number of states FA or number of operators in EXPR) 

• 𝜖-NFA in DFA: 𝑂(𝑛3𝑠) with 𝑠 reachable states, usually 𝑠 is at most 2𝑛 

• DFA in NFA: 𝑂(𝑛) 

• DFA in expression: 𝑂(𝑛34𝑛). From 𝜖-NFA 𝑂(𝑛34𝑛
32𝑛) 

• Expression in 𝜖-NFA: 𝑂(𝑛) 
 
Decide if a language is empty for an FA: if it exists a path from the initial state to a final state, the 
language is not empty. 

• Base: The initial state is reachable 

• Induction: If 𝑞 is reachable and there exists a transition from 𝑞 to 𝑝, then 𝑝 is reachable. 
Time: 𝑂(𝑛2) 
 
Decide if a language is empty for an expression: induction on the structure of 𝐸 

• Base: 
o If 𝐸 = 𝜖 or 𝐸 = 𝒂, then 𝐿(𝐸) is non-empty 
o If 𝐸 = ∅, then 𝐿(𝐸) is empty 

• Induction: 
o 𝐸 = 𝐹 + 𝐺, then 𝐿(𝐸) is empty iff both 𝐿(𝐹) and 𝐿(𝐺) are empty 
o 𝐸 = 𝐹. 𝐺, then 𝐿(𝐸) is empty iff either 𝐿(𝐹) or 𝐿(𝐺) are empty 
o 𝐸 = 𝐹∗, then 𝐿(𝐸) is not empty, since 𝜖 ∈ 𝐿(𝐸) 

 
Decide if a string 𝒘 is in a language 𝑳: 

• If 𝐿 is represented by a DFA 𝐴: we simulate the input of the string in the DFA. If it ends in a 
final state, then the string is in the language. 
Time: 𝑂(𝑛) with 𝑛 = |𝑤| 

• If 𝐿 is represented by an NFA: simulate. 𝑂(𝑛𝑠2), 𝑠=#states A 

• If 𝐿 is represented by a 𝜖-NFA: simulate. 𝑂(𝑛𝑠3), 

• Se 𝐿 è rappresentato da un Espressione di dimensione 𝑠: la si converte in un 𝜖-NFA. 𝑂(𝑛𝑠3) 
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4.4. Automata minimization 
Equivalent states: 𝑝 ≡ 𝑞 ⇔ ∀𝑤 ∈ Σ∗: 𝛿(𝑝, 𝑤) ∈ 𝐹 ⇔ 𝛿(𝑞, 𝑤) ∈ 𝐹 

If for every string 𝑤, 𝛿(𝑝,𝑤) is a final state IIF  𝛿(𝑞, 𝑤) is a final state. 

Distinguishable states: 𝑝 ≢ 𝑞 ⇔ ∃𝑤: 𝛿(𝑝, 𝑤) ∈ 𝐹 and 𝛿(𝑞, 𝑤) ∉ 𝐹 or viceversa 
If exist a string 𝑤 that brings to 𝑝 to a final state and 𝑞 not (or viceversa). 
 
Transitivity of the equivalence: If  𝑝 ≡ 𝑞 and  𝑞 ≡ 𝑟, then 𝑝 ≡ 𝑟 
 
Equivalence algorithm between states of DFA: 

• Base: if 𝑝 ∈ 𝐹 and 𝑞 ∉ 𝐹, then 𝑝 ≢ 𝑞 

• Induction: if ∃𝑎 ∈ Σ: 𝛿(𝑝, 𝑎) ≢ 𝛿(𝑞, 𝑎), then 𝑝 ≢ 𝑞 
If 2 states are not distinguished by the algorithm, then they are equivalent. 

• initialize table with pairs that are distinguishable by string 𝜖: put the X in all cells of final 
states (because the other ones are not). 

• for all not yet visited pairs, try to distinguish them using one symbol string: if you reach a 
pair of already distinguishable states, then update table 

• iterate until no new pair can be distinguished. 

      
Verify if two languages are equal: 𝑂(𝑛4) 

• Convert them in DFA 

• Build a DFA with the union of both (it will have 2 initial states) 

• Verify with the equivalence algorithm if the 2 initial states are distinguishable. If they are not 
distinguishable then they are equivalent 

There exist also an algorithm in 𝑂(𝑛2). Look in the book. 

 
DFA Minimization: 𝐴 = (𝑄𝐴, Σ, 𝛿𝐴, 𝑞0𝐴, 𝐹𝐴) 

• Determine the pairs of equivalent states with the equivalence 
algorithm 

• Partition 𝑄𝐴 in groups of equivalent states: 
o 𝑄𝐵: are the groups 
o Initial state 𝑞0𝐵: group that contains initial state of 𝐴 

o Final states 𝐹𝐵: groups that contains final states of 𝐴 
o 𝛿𝐵: for each group in 𝑄𝐵 look in the graph of 𝐴 where 

the arcs go. 
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5. Context-free grammars and Languages 
 

5.1. Context-free grammars (CFG) 
Definition: 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) 

• 𝑉 finite set of variables (nonterminals) 

• 𝑇 finite set of terminal symbols (terminals) 

• 𝑃 finite set of productions. Production: 𝐴 → 𝑎 
o Head: 𝐴 ∈ 𝑉 
o Production symbol: → 
o Body: string 𝑎 ∈ (𝑉 ∪ 𝑇)∗ 
o Compact notation: 𝐴 → 𝛼1, … 𝐴 → 𝛼𝑛 written as 𝐴 → 𝛼1| … |𝛼𝑛 

• 𝑆 ∈ 𝑉 variable (initial symbol) 

Es: T=  

P=     
 
2 Ways to define a language of a CFG: 

• Recursive inference: use production from the body to the head 

• Derivation: use production from the head to the body. 
Expand the initial symbol with one of its productions, then recursively expand one of it’s 
variables with one of it’s production till derive a string. 

 
Derivation step: 𝛼𝐴𝛽

𝐺
⇒𝛼𝛾𝛽 (substitute variable A with one of its productions) 

Multiple steps (0 or more): 𝛼𝐴𝛽
∗
⇒
𝐺
𝛼𝛾𝛽  

• Base: 𝛼
∗
⇒
𝐺
𝛼 with 𝛼 ∈ (𝑉 ∪ 𝑇)∗ 

• Induction: If 𝛼
∗
⇒
𝐺
𝛽 e 𝛽

𝐺
⇒ 𝛾 then 𝛼

∗
⇒
𝐺
𝛾 

Leftmost
𝑙𝑚
⇒ /Rightmost

𝑟𝑚
⇒  derivation: we always substitute the variable on the leftmost/rightmost 

Every terminal string has leftmost=rightmost derivation. 
 

Generated Language CFL: 𝐿(𝐺) = {𝑤 ∈ 𝑇∗|𝑆
∗
⇒
𝐺
𝑤} 

 
Sentential form: derivation from the initial symbol. 𝛼 ∈ (𝑉 ∪ 𝑇)∗ 

• Sentential form 𝛼: 𝑆
∗
⇒
𝐺
𝛼 

• Left Sentential form 𝛼: 𝑆
∗
⇒
𝑙𝑚
𝛼 

• Right Sentential form 𝛼: 𝑆
∗
⇒
𝑟𝑚
𝛼 

𝐿(𝐺) contains sentential forms that are in 𝑇∗ 
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Prove that a Grammar generates a Language: 

Ind. hyp.: for each variable 𝐴 in the CFG, define some property 𝑃𝐴 of all strings 𝑤 such that 𝐴
∗
⇒
𝐺
𝑤. 

Examples of Properties for each variable 𝐴 (start with the ones nearest to terminals, not 𝑆): 

• ∀𝑤 ∈ Σ∗, 𝑃𝐴(𝑤) holds true IFF 𝑤 is a sequence of n>=1 “1” followed by m>n “0” 

• … 

Prove for every property 𝑃𝐴: ∀𝑤 ∈ Σ∗, 𝑃𝐴(𝑤) holds true IIF 𝐴
∗
⇒𝑤 

• IF part: IF 𝐴
∗
⇒𝑤 THEN 𝑃𝐴(𝑤) 

Induction on the length of derivation 𝐴
∗
⇒𝑤 (number of steps) 

o Base: shortest derivation (that led to terminal) of 𝐴
∗
⇒𝑤 is 𝐴

1
⇒…

1
⇒1, we have that 

𝑤 is a sequence composed by …, so 𝑃𝐴(1) holds 
o Induction: assume derivation length >… 

If derivation starts with the production 𝐴 → 1𝐴… than we can write 𝐴
1
⇒1𝐴

∗
⇒1𝑥 =

𝑤 and 𝐴
∗
⇒𝑥 holds. 

Apply inductive hypothesis to 𝐴
∗
⇒𝑥 obtaining 𝑃𝐴(𝑥) holds true, that means 𝑥 is a 

sequence composed of … So 𝑤 = ⋯𝑥 is composed of … So 𝑃𝐴(𝑤) true. 
If there are 𝑘 parts in the inductive enunciate, in some parts of the induction we use mutual 
induction: 

o Focus on the first production of the derivation: 
𝐴 ⇒ 𝐵1…𝐵𝑘         

∗
⇒𝑥1𝐵2…𝐵𝑘     

⋮
∗
⇒𝑥1…𝑥𝑘 = 𝑤

 

o Use the inductive hypothesis on 𝐵𝑖
∗
⇒ 𝑥𝑖 to obtain that 𝑃𝐵𝑖(𝑥𝑖) holds for each 𝑖 

o Use 𝑃𝐴 definition to show that 𝑃𝐴(𝑤) is true 

• ONLY IF part: IF 𝑃𝐴(𝑤) THEN 𝐴
∗
⇒𝑤 

Induction on length of |𝑤|: 
o Base: |𝑤| minimum length (0 if there is 𝜖, 1 if there is 1 symbol, 2…). Check every 

possible value of 𝑤 of that length: 

▪ case w=”0” then 𝑃𝐴(𝑤) is true and the required derivation is 𝐴
1
⇒0 

▪ case w=”1” then 𝑃𝐴(𝑤) is false. So the implication is true. 

o Induction: assume |𝑤| > min length. Consider 𝑃𝐴(𝑤) true and we prove that 𝐴
∗
⇒𝑤. 

Decompose 𝑤…, if 𝑤 starts with … . We apply inductive hypothesis, and conclude 

𝐴
∗
⇒𝑥. Using production 𝐴 → 1𝐴 we can write 𝐴

1
⇒1𝐴

∗
⇒1𝑥 = 𝑤 

If there are 𝑘 parts in the inductive enunciate, in some parts of the induction we use mutual 
induction: 

o Using 𝑃𝐴 definition, choose a factorization 𝑤 = 𝑥1…𝑥𝑘 such that 𝑃𝐵𝑖(𝑥𝑖) holds for 

each 𝑖 

o Use the inductive hypothesis on 𝑃𝐵𝑖(𝑥𝑖) to obtain 𝐵𝑖
∗
⇒𝑥𝑖  for each 𝑖 

o Choose a production 𝐴 → 𝐵1…𝐵𝑘 and obtain 
𝐴 ⇒ 𝐵1…𝐵𝑘    

∗
⇒𝑥1𝐵2…𝐵𝑘

…
∗
⇒𝑥1…𝑥𝑘 = 𝑤
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5.2. Parse Tree 
Tree representation of a derivation. Represent the syntactic structure of a sentence according to 
the grammar. 
 
Construction: 

• each internal node is labeled with a variable in 𝑉 

• each leaf node is labeled with a variable, a terminal or 𝜖. 𝑉 ∪ 𝑇 ∪ {𝜖} 
each leaf labeled with 𝜖 is the only child of its parent 

• if an internal node is labeled 𝐴 and its children (from left to right) are labeled 𝑋1, … , 𝑋𝑘, then 
𝐴 → 𝑋1…𝑋𝑘 ∈ 𝑃 
𝑋 can be 𝜖 only if 𝐴 → 𝜖 ∈ 𝑃 

 
 
Yield: is the string obtained by reading the leaves from left to right. 
Complete parse trees: 

• the yield is a string of terminal symbols 

• the root is labeled by the initial symbol 
The set of yields of all complete parse trees is the language generated by the CFG. 
 
Following statements are equivalent: 𝐴 ∈ 𝑉,𝑤 ∈ (𝑉 ∪ 𝑇)∗ 

• 𝐴
∗
⇒𝑤 

• 𝐴
∗
⇒
𝑙𝑚
𝑤 

• 𝐴
∗
⇒
𝑟𝑚
𝑤 

• there exists a parse tree for 𝐺 with root label 𝐴 and yield 𝑤 
 

We can always compose 2 derivations: 𝐴
∗
⇒𝛼𝐵𝛽 e 𝐵

∗
⇒𝛾 into a single derivation 𝐴

∗
⇒𝛼𝛾𝛽

∗
⇒𝛼𝛾𝛽 

Given 𝐴 ⇒ 𝑋1…𝑋𝑘
∗
⇒𝑤 we can always factorize 𝑤 in 𝑤1…𝑤𝑘 such that 𝑋𝑖

∗
⇒𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑘 

Substring 𝑤𝑖 can be identified from derivation 𝐴
∗
⇒𝑤 by considering only those derivation steps that 

rewrite 𝑋𝑖 
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5.3. Ambiguity and relation with Regular languages 
Some strings might have more than one parse tree. And a parse tree can have several derivations. 
 
Grammar 𝐺 is ambiguous: if there exists a string in 𝐿(𝐺) with more than one parse tree 
Grammar 𝐺 is unambiguous: If every string in 𝐿(𝐺) has only one parse tree. 
There is no way to remove the ambiguity. 
A terminal string 𝑤 had 2 distinct parse trees IFF 𝑤 has 2 different derivations to the left of 𝑆. 
Language 𝐿 is inherently ambiguous: when every CFG such that 𝐿(𝐺) = 𝐿 is ambiguous. 
 
A regular language is always a CFL. 
From a regular expression or from an FA we can always construct a CFG generating the same 
language. 
CFGs can simulate FAs or regular expressions. 
 
From regular expression to CFG: given 𝐸, use variable 𝐸 (start symbol) and a variable for each 
subexpression of 𝐸 and do structural induction: 

• 𝐸 = 𝒂: add production 𝐸 → 𝑎 

• 𝐸 = 𝜖: add production 𝐸 → 𝜖 

• 𝐸 = ∅: the production set is empty 

• 𝐸 = 𝐹 + 𝐺: add production 𝐸 → 𝐹 | 𝐺 

• 𝐸 = 𝐹𝐺: add production 𝐸 → 𝐹𝐺 

• 𝐸 = 𝐹∗: add production 𝐸 → 𝐹𝐺 | 𝜖 

 
 
From FA to CFG: 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) --> 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) 

• 𝑉 = create a variable 𝑄𝑖 for each state in 𝑄 

• 𝑆 = 𝑄0 is the variable of 𝑞0 

• 𝑃 = for each transition from 𝑞𝑖 to 𝑞𝑗 under symbol 𝑎, add the production 𝑄𝑖 → 𝑎𝑄𝑗 

• If 𝑞𝑘 is a final state, add production 𝑄𝑘 → 𝜖 

• 𝑇 = Σ  
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6. Push-Down Automata (PDA) 
 

6.1. Definition 
Is a 𝜖-NFA with a stack (LIFO) that can memorize symbols. Recognize all and only the CFL. 
 
PDA: 𝑃 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹) 

• 𝑄: finite set of states 

• Σ: finite set of symbols 

• Γ: stack alphabet. Finite set of symbols that can be inserted into the stack. 

• 𝛿: 𝑄 × Σ ∪ {𝜖} × Γ → 2𝑄×Γ
∗
: transition: 

o Input the triplet (𝑞, 𝑎, 𝑋) with 𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪
{𝜖}, 𝑋 ∈ Γ 

o Output: finite set of pairs (𝑝, 𝛾) where 𝑝 is the new 
state and 𝛾 is the string that replace 𝑋 on the top 
of the stack. 

• 𝑞0: initial state 

• 𝑍0 ∈ Γ: initial stack symbol. 

• 𝐹 ⊆ 𝑄: set of final states. 
 
Transition the PDA: 

• Consumes a single symbol from the input or is an 𝜖-transition 

• Update the current state 

• replaces the top-most symbol of the stack with a string of symbols, including 𝜖 that is 
equivalent to popping the element on the top. 

 
Transition Graphic notation: for (𝑝, 𝛼) ∈ 𝛿(𝑞, 𝑎, 𝑋) we label the arc from 𝑝 to 𝑞 with 𝑎, 𝑋/𝛼 

 
 
Computation: is a sequence of “configurations” of the automaton obtained one from the other by 
consuming an input symbol or else by reading 𝜖 
Instantaneous description (ID): (𝑞, 𝑤, 𝛾) 

• 𝑞: state 

• 𝑤: remaining input 

• 𝛾: stack content 
Computational move ⊢: binary relation between instantaneous descriptions 

(𝑞, 𝑎𝑤, 𝑋𝛽) ⊢ (𝑝,𝑤, 𝛼𝛽) 

The computation is represented by the Closure 
∗
⊢
𝑃

: zero or more PDA moves 
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Properties of computations: if an ID sequence is valid (relation ⊢) for a PDA 𝑃: 

• then so is the sequence obtained by adding any string to the tail of the input 

• then so is the sequence obtained by adding any string to the bottom of the stack 

• and some tail of the input is not consumed, then so is the sequence obtained by removing 
that tail in every ID in the sequence 

It means that symbols that are not read/consumed by the PDA do not affect the computation. 

• ∀𝑤 ∈ Σ∗, 𝛾 ∈ Γ∗: (𝑞, 𝑥, 𝛼)
∗
⊢
𝑃
(𝑝, 𝑦, 𝛽) ⟹ (𝑞, 𝑥𝑤, 𝛼𝛾)

∗
⊢
𝑃
(𝑝, 𝑦𝑤, 𝛽𝛾)  

If 𝛾 = 𝜖 we have property 1 and if 𝑤 = 𝜖 we have the 2 

• ∀𝑤 ∈ Σ∗: (𝑞, 𝑥𝑤, 𝛼)
∗
⊢
𝑃
(𝑝, 𝑦𝑤, 𝛽) ⟹ (𝑞, 𝑥, 𝛼)

∗
⊢
𝑃
(𝑝, 𝑦, 𝛽)  

 
 

6.2. Accepted language 
 

Language accepted by final state: 𝑳(𝑷) = {𝑤|(𝑞0, 𝑤, 𝑍0)
∗
⊢
𝑃
(𝑞, 𝜖, 𝛼), 𝑞 ∈ 𝐹} 

Starting from the initial ID, 𝑃 consumes the input 𝑤 till it reaches a final state. The stack does not 
necessarily need to be empty at the end of the computation. 
 

Language accepted by empty stack: 𝑵(𝑷) = {𝑤|(𝑞0, 𝑤, 𝑍0)
∗
⊢
𝑃
(𝑞, 𝜖, 𝜖)} 

𝑁(𝑃) is the set of the inputs 𝑤 that 𝑃 consumes making the stack empty. 
𝐿(𝑃) = 𝑁(𝑃)  
 
From empty stack to final state: 
If 𝐿 = 𝑁(𝑃𝑁) then exist a PDA 𝑃𝐹 such that 𝐿 = 𝐿(𝑃𝐹). Proof: 

𝑃𝐹 = (𝑄 ∪ {𝑝0, 𝑝𝑓}, Σ, Γ ∪ {𝑋0}, 𝛿𝐹 , 𝑝0𝑋0, {𝑝𝑓}) 

with 𝛿𝐹: 

• 𝛿𝐹(𝑝0, 𝜖, 𝑋0) = {(𝑞0, 𝑍0𝑋0)} 
• 𝛿𝐹(𝑞, 𝑎, 𝑌) = 𝛿𝑁(𝑞, 𝑎, 𝑌) ∀𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ {𝜖}, 𝑌 ∈ Γ 

• 𝛿𝐹(𝑞, 𝜖, 𝑋0) contains (𝑝𝑓 , 𝜖) ∀𝑞 ∈ 𝑄 

 
From final state to empty stack: 
If 𝐿 = 𝐿(𝑃𝐹) then exist a PDA 𝑃𝑁 such that 𝐿 = 𝑁(𝑃𝑁). Proof: 

𝑃𝑁 = (𝑄 ∪ {𝑝0, 𝑝}, Σ, Γ ∪ {𝑋0}, 𝛿𝑁 , 𝑝0, 𝑋0) 
with 𝛿𝑁: 

• 𝛿𝑁(𝑝0, 𝜖, 𝑋0) = {(𝑞0, 𝑍0𝑋0)} 
• 𝛿𝑁(𝑞, 𝑎, 𝑌) = 𝛿𝐹(𝑞, 𝑎, 𝑌). ∀𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ {𝜖}, 𝑌 ∈ Γ 

• (𝑝, 𝜖) ∈ 𝛿𝑁(𝑞, 𝜖, 𝑌). ∀𝑞 ∈ 𝐹, 𝑌 ∈ Γ ∪ {X0} 
• 𝛿𝑁(𝑞, 𝜖, 𝑌) = {(𝑝, 𝜖)} ∀𝑌 ∈ Γ ∪ {X0} 
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6.3. Equivalence of PDAs e CFGs 
 
The following statements are equivalent 

• L is generated by a CFG 

• L is accepted by a PDA by empty stack 

• L is accepted by a PDA by final state 

 
 
From CFG to PDA: 𝐺 = (𝑉, 𝑇, 𝑅, 𝑆) -----> 𝑃 = ({𝑞}, 𝑇, 𝑉 ∪ 𝑇, 𝛿, 𝑞, 𝑆) 
with 𝛿: 

• 𝛿(𝑞, 𝜖, 𝐴) = {(𝑞, 𝛽)|(𝐴 → 𝛽) ∈ 𝑅} for each  𝐴 ∈ 𝑉 

• 𝛿(𝑞, 𝑎, 𝑎) = {(𝑞, 𝜖)} for each terminal 𝑎 ∈ 𝑇 
So 𝐿(𝐺) = 𝐿(𝑃) 
 
From PDA to CFG: 𝑃 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹) ----> 𝐺 = (𝑉, 𝑇, 𝑅, 𝑆) 

• 𝑉 = 
o initial symbol 𝑆 
o the symbol [𝑝𝑋𝑞] for each 𝑝, 𝑞 ∈ 𝑄 , 𝑋 ∈ Γ 

• Productions 𝑅 = 
o The production 𝑆 → [𝑞0𝑍0𝑝] for each 𝑝 ∈ 𝑄 
o If 𝛿(𝑞, 𝑎, 𝑋) contains (𝑟, 𝑌1…𝑌𝑘) where 𝑎 ∈ Σ ∪ {𝜖} and 𝑘 ∈ ℕ 

Then for each sequence of states 𝑟1, … , 𝑟𝑘 ∈ 𝑄, 𝑅 contains the production 
[𝑞𝑋𝑟𝑘] → 𝑎[𝑟𝑌1𝑟1]… [𝑟𝑘−1𝑌𝑘𝑟𝑘] 
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7. Properties of CFL 
 

7.1. Normal forms of CFG 
 

7.1.1. Eliminate useless symbols 
Given a CFG 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆). A symbol 𝑋 ∈ 𝑉 ∪ 𝑇 is: 

• reachable if there exists a derivation 𝑆
∗
⇒𝛼𝑋𝛽 

• generating if there exists a derivation 𝑆
∗
⇒𝑤 for some 𝑤 ∈ 𝑇∗ 

• useful if it is reachable and generating, so if there exist a derivation 𝑆
∗
⇒𝛼𝑋𝛽

∗
⇒𝑤 

 
Compute generating symbols: 𝑔(𝐺) 

• Base: each symbol in 𝑇 is a generating 

• Induction: given 𝐴 → 𝛼, 𝐴 is a generator if each symbol of 𝛼 is a generator 
 
Compute reachable symbols: 𝑟(𝐺) 

• Base: 𝑆 is reachable 

• Induction: if 𝐴 is reachable, then every production with 𝐴 as head is reachable 
 
Eliminate useless symbols:  

• Build 𝐺1 = (𝑉1, 𝑇1, 𝑃1, 𝑆) by eliminating from 𝐺 all non-generating symbols and all 
productions in which they appear. 

• Build 𝐺2 = (𝑉2, 𝑇2, 𝑃2, 𝑆) by eliminating from 𝐺1 all non-reachable symbols (in 𝐺1) and all 
productions in which they appear. 

So 𝐿(𝐺2) = 𝐿(𝐺) 
 

7.1.2. Eliminate 𝝐-Productions 
If 𝐿 is a context-free language, then there is a CFG without 𝜖-productions that generates 𝐿\{𝜖} 
 

Variable 𝐴 is nullable if 𝐴
∗
⇒𝜖 

Compute nullable symbols: 𝑛(𝐺) 

• Base: if 𝐴 → 𝜖, then 𝐴 is nullable 

• Induction: if there exist a production 𝐵 → 𝐶1…𝐶𝑘 in which every variable is nullable, then 
𝐵 is nullable. 

 
Eliminate 𝝐-productions: 
𝐺1 = (𝑉, 𝑇, 𝑃1, 𝑆) with 𝑃1 obtained: 

• Productions 𝐴 → 𝜖 are not inserted in 𝑃1 

• For each production 𝐴 → 𝑋1…𝑋𝑘 of 𝑃, with 𝑘 ≥ 1, if there are 𝑚 𝑋𝑖 nullable, insert in 𝑃1 all 
the 2𝑚 versions of the production, where the 𝑋𝑖 are present or absent in all possible 
combinations. 

• Exception: if 𝑚 = 𝑘, not insert in 𝑃1 the production 𝐴 → 𝜖 
So 𝐿(𝐺1) = 𝐿(𝐺) − {𝜖} 
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7.1.3. Eliminate unary productions 
Unary production: 𝐴 → 𝐵 in which both 𝐴 and 𝐵 are variables in 𝑉. (𝐴 → 𝑎, 𝐴 → 𝜖 are not unary 
productions) 

Unary pair (𝐴, 𝐵): if 𝐴
∗
⇒𝐵 using only unary productions 

 
Compute unary pairs: 𝑢(𝐺) 

• Base: (𝐴, 𝐴) is a unary pair for each variable 𝐴 

• Induction: if (𝐴, 𝐵) is a unary pair, 𝐵 → 𝐶 in which 𝐶 is a variable, then (𝐴, 𝐶) is a unary 
variable. 

 
Eliminate unary productions: for each unary pair (𝐴, 𝐵) ∈ 𝑢(𝐺), for each 𝐵 → 𝛼 that is a NON unary 
production of 𝑃, add to 𝑃1 the productions 𝐴 → 𝛼. (𝐴 → 𝛼 might not be present before) 
 
 

7.1.4. Chomsky normal form (CFN) 
A CFG is in Chomsky normal form (CNF), if its productions have one of the two forms: 

• 𝐴 → 𝐵𝐶, with 𝐴, 𝐵, 𝐶 ∈ 𝑉 

• 𝐴 → 𝑎 with 𝐴 ∈ 𝑉, 𝑎 ∈ 𝑇 
and the grammar does not have useless symbols. 
 
Every CFL without the empty string 𝜖 can be generated by CNF grammar. 
 
CFG simplification: (in order) 

• elimination of 𝜖-productions 

• elimination of unary productions 

• elimination of useless symbols 
The resulting grammar has productions of the form: 

• 𝐴 → 𝑎 
• 𝐴 → 𝛼, with 𝛼 ∈ (𝑉 ∪ 𝑇)∗, |𝛼| ≥ 2 

 
From simplified CFG to CFN: 

• right-hand sides of length ≥ 2 must only have variables. 
For each production with right-hand side 𝛼 such that |𝛼| ≥ 2 and for each occurrence in 𝛼 
of 𝑎 ∈ 𝑇: 

o construct a new production 𝐴 → 𝑎 (𝐴 new variable) 
o use 𝐴 in place of 𝑎 in 𝛼 

• right-hand sides of length ≥ 2 must be decomposed into chains of productions with only 
two variables in their right-hand side. 
For each production of the form 𝐴 → 𝐵1𝐵2…𝐵𝑘, 𝑘 ≥ 3 

o introduce new variables 𝐶1, … , 𝐶𝑘−2 
o replace the production with the chain of new productions: (𝐴 → 𝐵1 𝐶1), (𝐶1 →
𝐵2𝐶2),… , (𝐶𝑘−3 → 𝐵𝑘−2𝐶𝑘−2), (𝐶𝑘−2 → 𝐵𝑘−1 𝐵𝑘) 

 
Greibach normal form (GNF): if every production has the form 𝐴 → 𝑎𝛼 with 𝑎 ∈ 𝑇, 𝛼 ∈ 𝑉∗ 

• every nonempty CFL with non-empty strings has only one GNF grammar 

• a grammar in GNF generates a string of length 𝑛 in exactly 𝑛 steps 

• if we turn a GNF grammar into a PDA, we get an automaton without 𝜖-transitions 



 

29 
 

7.2. Pumping lemma for CFL 
Used to prove that a Language is not a CFL. 
 
Given a Parse Tree 𝑇 of a string 𝑤 generated by a CNF. If the longest path in 𝑇 has 𝑛 arcs, then |𝑤| ≤
2𝑛−1. 
 
Let 𝐿 be some CFL. Then ∃𝑛 ∈ ℕ such that if 𝑧 ∈ 𝐿 with |𝑧| ≥ 𝑛, 
we can factorize 𝑧 = 𝑢𝑣𝑤𝑥𝑦 under the following conditions: 

• |𝑣𝑤𝑥| ≤ 𝑛 
• 𝑣𝑥 ≠ 𝜖 it means that |𝑣| + |𝑥| ≥ 1 

• ∀𝑘 ≥ 0, 𝑢𝑣𝑘𝑤𝑥𝑘𝑦 ∈ 𝐿 
 
It means that, in each sufficiently long string of a CFL we can find 
two substrings next to each other that 

• can be eliminated 

• can be iterated (synchronously) 
still resulting in strings of the language. 
 
Consequences of the pumping lemma: 

• A CFL cannot display crossing pairs with the same arbitrary number of symbols. (Eg. 𝐿 =

{0𝑖1𝑗2𝑖3𝑗|𝑖, 𝑗 ≥ 1} is NOT a CFL) 

 
• A CFL cannot copy strings of arbitrary length if those are defined in an alphabet with more 

than 1 symbol. (Eg. 𝐿 = {𝑤𝑤|𝑤 ∈ {0,1}∗} is NOT a CFL) 
 
How to use it: 

• Suppose 𝐿 CFL. Then ∃𝑛 ∈ ℕ… 

• Invent a 𝑧 ∈ 𝐿 with |𝑧| ≥ 𝑛. Make some symbols repeats 𝑛 times. 

• Decompose 𝑧 = 𝑢𝑣𝑤𝑥𝑦. Respecting |𝑣𝑤𝑥| ≤ 𝑛 and 𝑣𝑥 ≠ 𝜖 

• If I can choose a 𝑘 so that 𝑢𝑣𝑘𝑤𝑥𝑘𝑦 ∉ 𝐿, then the language is not CFL. 
o For any possible choice of 𝑣 and 𝑥 there must be a 𝑘 that falsify the theorem. 

 
Common Not CFL languages: 

• 𝐿 = {0𝑖1𝑗2𝑖3𝑗|𝑖, 𝑗 ≥ 1} 

• 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛|𝑛 ≥ 0} 
• 𝐿 = {𝑤|#𝑎(𝑤) = #𝑏(𝑤) = #𝑐(𝑤)} 

 
Common NOT REG languages: 

• 𝐿 = {𝑎𝑛𝑏𝑛|𝑛 ≥ 0} 
• 𝐿 = {𝑤|#𝑎(𝑤) = #𝑏(𝑤)} 

 
Other tricks: 

• First check if you can build a grammar or a PDA that accept the language. 

• If the form of the string is not given (not a^nb^n…), do the intersection with a regular, then 
use pumping on the new language and for closure property also the initial is not CFL. 
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7.3. Closure properties for CFL 
The following properties (substitution, union, …) between CFL, returns CFL. 

• Substitution: every symbol in the strings of a language is substituted with another language. 

o 𝑠: Σ → 2Δ
∗
, with Σ and Δ finite alphabets, 𝑠(𝑎) a CFL 

o Given 𝑤 ∈ Σ∗, 𝑤 = 𝑎1…𝑎𝑛, 𝑎𝑖 ∈ Σ 
o 𝑠(𝑤) = 𝑠(𝑎1). 𝑠(𝑎2).⋯ . 𝑠(𝑎𝑛) 
o 𝒔(𝑳) = ⋃ 𝒔(𝒘)𝒘∈𝑳  union of the 𝑠(𝑤) for all the strings 𝑤 ∈ 𝐿. 𝑠(𝐿) is a CFL 
o Eg. 

 
• Union: 𝐿1 ∪ 𝐿2 (but you can’t split a CFL in 2) 

• Concatenation: 𝐿1𝐿2 

• Kleene closure (𝑳∗) and positive closure (𝑳+) 

• Inversion: 𝐿𝑅  

• Intersection with regular language: 𝐿 ∩ 𝑅 is a CFL 

• Difference with regular: 𝐿 − 𝑅 is a CFL 

• 𝐿1 ∩ 𝐿2 may fall outside of CFL:  

𝐿1 = 𝑎
𝑛𝑏𝑛𝑐𝑖 ∈ 𝐶𝐹𝐿, 𝐿2 = 𝑎

𝑖𝑏𝑛𝑐𝑛 ∈ 𝐶𝐹𝐿 𝐿 = 𝐿1 ∩ 𝐿2 = 𝑎
𝑛𝑏𝑛𝑐𝑛 ∉ 𝐶𝐹𝐿 

• �̅� = Σ∗ − 𝐿 may fall outside of CFL. 

If it was true then: 𝐿1 ∩ 𝐿2 = 𝐿1̅̅ ̅ ∪ 𝐿2̅̅ ̅
̅̅ ̅̅ ̅̅ ̅̅ ̅ but intersection is not closed. 

• 𝐿1 − 𝐿2 may fall outside of CFL 
 
Tell if CFL is closed under a property 𝑷: 

• Prove that for each 𝐿 ∈ 𝐶𝐹𝐿, 𝑃(𝐿) ∈ 𝐶𝐹𝐿 

• Or show counterexample 
 
 
  



 

31 
 

7.4. Computational properties 
𝑛 the length of the entire representation of a PDA or a CFG 
Complexity of conversions: 

• Conversion from CFG to PDA: 𝑂(𝑛) 

• Conversion from PDA accepting by final state to accepting by empty stack: 𝑂(𝑛) viceversa 

• Conversion from PDA to CFG: 𝑂(𝑛3) 

• Conversion from CFG to CNF: 𝑂(𝑛2) 
 
We can compute in time 𝑂(𝑛): 

• the set of reachable symbols 𝑟(𝐺) 

• the set of generating symbols 𝑔(𝐺) 

• the elimination of useless symbols from a CFG 

• the set of nullable symbols 𝑛(𝐺) 

• the elimination of 𝜖-productions using a preliminary binarization of the grammar 

• the replacement of terminal symbols with variables (first transformation for CNF) 

• the reduction of production with right-hand side length larger than 2 (second transformation 
for CNF) 

 
We can compute in time 𝑂(𝑛2): 

• the set of unary symbols 𝑢(𝐺) 

• the elimination of unary productions from a CFG 
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7.5. Decision problems for CFL 
 
Check if a CFL is empty: 𝑂(𝑛) 
Using a modified version of the representation of 𝐺: 𝐿(𝐺) = ∅ IFF 𝑆 is not a generator 
 
Check if a string 𝒘 ∈ 𝑳(𝑮) for a fixed CFG 𝑮: 𝑂(𝑛3) 
Given a grammar in Chomsky normal form. 
We can generate all the parse trees of 𝐺 with 2𝑛 − 1 nodes and test 
whether some tree yields 𝑤. 
But with dynamic programming: 

• Assume 𝑤 = 𝑎1…𝑎𝑛 

• construct a triangular parse table where cell 𝑋𝑖𝑗 contains all 

variables 𝐴 such that 𝐴
∗
⇒𝑎𝑖𝑎𝑖+1…𝑎𝑗 

• Iteratively construct the parse table, one row at a time and from 
bottom to top. 

• First row is populated with the base case, the other with induction 

• 1 row: strings of length 1. 2 row: strings length 2, …. 
DP Algorithm: 

• Base: 𝑋𝑖𝑖 = {𝐴|(𝐴 → 𝑎𝑖) ∈ 𝐺} first row 

• Induction: 𝑋𝑖𝑗 = every 𝐴 such that 

o 𝑖 ≤ 𝑘 < 𝑗 
o 𝐵 ∈ 𝑋𝑖𝑘 
o 𝐶 ∈ 𝑋𝑘+1,𝑗 

o (𝐴 → 𝐵𝐶) ∈ 𝐺 
To populate the 𝑋𝑖𝑗 we need to check at most 𝑛 pairs of previously built 

cells of the parse table. 

(𝑋𝑖𝑖, 𝑋𝑖+1,𝑗), (𝑋𝑖,𝑖+1, 𝑋𝑖+2,𝑗), … , (𝑋𝑖,𝑗−1, 𝑋𝑗𝑗) 

 
Example: 

 
 
Undecidable decision problem for CFLs: 

• given a CFG 𝐺, test whether 𝐺 is ambiguous 

• given a representation for a CFL 𝐿, test whether 𝐿 is inherently ambiguous 

• given a representation for two CFLs 𝐿1 and 𝐿2, test whether the intersection 𝐿1 ∩ 𝐿2 is empty 

• given a representation for two CFLs 𝐿1 and 𝐿2, test whether 𝐿1 = 𝐿2 

• given a representation for a CFL 𝐿 defined over Σ, test whether 𝐿 = Σ∗ 
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8. Turing Machines 
 

8.1. Definition 
A Turing machine is a finite state automaton with the addition of a memory tape with unlimited 
capacity in both tape directions and sequential access. 
Input: a finite string, composed by symbols, it’s placed in the memory tape. At its right and left there 
is an infinite series of Blank symbols. 
Head: at the beginning is pointing to the leftmost cell of the input. 
Move: performed according to its state and the symbol which is read by the tape head. In a move: 

• changes its state 

• writes a new symbol in the cell read by the tape head 

• moves the tape head to the cell to the right or to the le 

 
TM: 𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐵, 𝐹) 

• 𝑄: finite set of states 

• Σ: finite set of input symbols 

• Γ: finite set of tape symbols. Σ ⊆ Γ 

• 𝛿: 𝑄 × Γ → 𝑄 × Γ × {𝐿, 𝑅} 
o Input (𝑞, 𝑋): state and tape symbol 
o Output (𝑝, 𝑌, 𝐷): state, symbol that replaces 𝑋, direction (Left or Right) 

• 𝑞0: initial state 

• 𝐵 ∈ Γ: symbol Blank ∉ Σ 

• 𝐹 ⊆ 𝑄: finite set of final states 
 
A TM changes its configuration with each move. We use instantaneous description (ID) to describe 
configurations. 
Instantaneous description (ID): string 𝑋1𝑋2…𝑋𝑖−1𝑞𝑋𝑖𝑋𝑖+1…𝑋𝑛 

• 𝑞: state 

• tape head is reading the 𝑖-th tape symbol 

• 𝑋1…𝑋𝑛: visited portion of the tape 
 
Computation step ⊢: binary relation between instantaneous descriptions 

• If 𝛿(𝑞, 𝑋𝑖) = (𝑝, 𝑌, 𝐿) then 𝑋1𝑋2…𝑋𝑖−1𝑞𝑋𝑖𝑋𝑖+1…𝑋𝑛 ⊢ 𝑋1𝑋2…𝑝𝑋𝑖−1𝑌𝑋𝑖+1…𝑋𝑛. 
Replace 𝑋𝑖 with 𝑌 and the head move to the left of 1 symbol. 

• If 𝛿(𝑞, 𝑋𝑖) = (𝑝, 𝑌, 𝑅) then 𝑋1𝑋2…𝑋𝑖−1𝑞𝑋𝑖𝑋𝑖+1…𝑋𝑛 ⊢ 𝑋1𝑋2…𝑋𝑖−1𝑌𝑝𝑋𝑖+1…𝑋𝑛. 
Replace 𝑋𝑖 with 𝑌 and the head move to the right of 1 symbol. 

• If the head goes outside, it will add the symbol 𝐵. 

Computation is represented by the Closure 
∗
⊢
𝑀

: (zero or more moves) 

Initial ID has the form 𝑞0𝑤 

Accepting computation has the form 𝑞0𝑤
∗
⊢
𝑀
𝛼𝑝𝛽 with 𝑤 ∈ Σ∗, 𝑝 ∈ 𝐹, 𝛼, 𝛽 ∈ Γ∗ 
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Transition diagram: arch from 𝑞 to 𝑝 is labeled by one or more objects 𝑋/𝑌𝐷 with  

• 𝑋: symbol read from the cell of the tape 

• 𝑌: symbol that replaces  

• 𝐷 ∈ {𝐿, 𝑅} direction, represented also as with an arrow. 

 
 
 
We have defined a TM as a recognition device. Alternatively, we can use these devices to compute 
functions on natural numbers. 
We encode each natural number in unary notation according to the scheme 𝑛 =1 0

𝑛 
 

Language accepted: 𝐿(𝑀) = {𝑤|𝑤 ∈ Σ∗, 𝑞0𝑤
∗
⊢
𝑀
𝛼𝑝𝛽, 𝑝 ∈ 𝐹, 𝛼, 𝛽 ∈ Γ∗} 

Called Recursively Enumerable (RE) 
 
Halts (stops): if it enters a state 𝑞 with tape symbol 𝑋 and 𝛿(𝑞, 𝑋) is not defined (there is no next 
move) 
If a TM accepts a string, we can assume that it always halts: just make 𝛿(𝑞, 𝑋) undefined for every 
final state 𝑞. 
If a TM does not accept, we can't assume that it will halt (in a non-final state). 
 
 
Recursive language (REC): language accepted by a TM that halts on each input string (independently 
of acceptance). 
Recursively enumerable language (RE): language accepted by a TM that halts when the string 
belongs to the language. 
 
A decision problem 𝑃 is: 

• Decidable if its encoding 𝐿𝑃 is a recursive language. 
Alternatively: if there is a TM 𝑀 that always halts such that 𝐿(𝑀) = 𝐿𝑃 

• Undecidable: if there is no program that can solve it. 

• Every problem 𝑃 can be represented by a language 𝐿𝑃, and solving 𝑃 means solving the 
problem of checking if a string belongs to 𝐿𝑃. 

• Intractable: decidable (solvable) bat requires a huge amount of time to be solved. 
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8.2. Programming techniques for TM 
Techniques to facilitate the writing of programs for TM. 
 
TM with: 

• a finite number of registers with random access, which we place inside each state 

• a finite number of tape tracks. (Sometimes used to mark symbols of the first tape) 

 
State is a 𝑛-ple [𝑞, 𝐴, 𝐵, 𝐶] 
Tape alphabet is composed by 𝑛-ples with a component for each track [𝑋, 𝑌, 𝑍] 
 
Subroutine: set of states that execute a procedure 
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8.3. Extensions 
More complex than TM but with the same computational capacity. 
 
Multi-tape TM: finite number of independent tapes for the computation, with the input on the first 
tape. Useful to simulate a real calculator. 
In one move: 

• state update 

• for each tape: 
o write a symbol in current cell 
o move the tape head independently of the other heads (L = left, R = right, or S = stay) 

 
Accept same languages of normal TM. (proof slides 08.33) 
Can be simulated by a single-tape TM in 𝑂(𝑛2) time, with 𝑛 number of moves to simulate. 
 
Nondeterministic TM (NTM): transition function 𝛿 returns sets of triplets 

𝛿(𝑞, 𝑋) = {(𝑞1, 𝑌1, 𝐷1), … , (𝑞𝑘, 𝑌𝑘, 𝐷𝑘)} 
At each step, the NTM chooses one of the triples as the next move. 
Accepts an input 𝑤 if there exists a sequence of choices that leads from the initial ID for 𝑤 to an ID 
with an accepting state. 
Accept same languages of normal TM.  

 

 
Observe that the TM MD in the previous theorem can take an amount of time exponentially larger 
than MN to accept an input string. 
We do not know if this slowdown is necessary: this very important issue will be the subject of 
investigation in a next chapter.  
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8.4. Restrictions 
Simpler than normal TM but with the same computational capacity and accept same languages. 
 
Semi-infinite tape: 

• the head can not visit the cells to the left of the initial tape position 

• a tape symbol can never be overwritten by the blank B 
Each ID is a sequence of tape symbols other than B, it means that there are no holes 
We can simulate a normal TM with TM with semi-infinite tape that has two tracks: 

• the upper track represents the initial position 𝑋0 and all tape cells to its right 

• the lower track represents all tape cells to the left of 𝑋0, in reverse order 

• a special symbol ∗ is used to mark the initial position 

 
Accept same languages of normal TM. (proof 08.44) 
 
Multi-Stack machine: multi-tape TM in which every track is used has stack. 
Generalization of the PDA: is a PDA with more that 1 stack. 

 
Transition rule (𝑘 stacks): 𝛿(𝑞, 𝑎, 𝑋1, … , 𝑋𝑘) = (𝑝, 𝛾1, … , 𝛾𝑘) 
It means that: when the machine is in state 𝑞 and reads input symbol 𝑎 ∈ Σ ∪ {𝜖}, and with 𝑋𝑖 on 
top of the 𝑖-th stack, 1 ≤ 𝑖 ≤ 𝑘, it moves to state 𝑝 and replaces each 𝑋𝑖 with 𝛾𝑖. 
With 2 stack, can simulate a normal TM. 
Accept same languages of normal TM. (proof 08.52) 
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9. Undecidability 
 

9.1. Non-RE languages 
Recursively enumerable language (RE): if 𝐿 = 𝐿(𝑀) for some TM 𝑀. Languages accepted by a TM. 
𝑀 halts if 𝑤 ∈ 𝐿(𝑀), but 𝑀 may not halt if 𝑤 ∉ 𝐿(𝑀) 
 
Recursive (REC) or Decidable language: if 𝐿 = 𝐿(𝑀) for some TM 𝑀 that halts on every input. 

• if 𝑤 ∈ 𝐿 then 𝑀 accept (and halts) 

• if 𝑤 ∉ 𝐿 then 𝑀 halts in non-final state. 
Corresponds to the definition of algorithm, for which we impose that computation halting occurs 
both for positive and negative instances of the problem. 
 
Binary string indexing (enumeration): associate to each binary string 𝑤 ∈ {0,1}∗ a positive integer 
index 𝑖. 𝑤𝑖 denote the 𝑖-th string. 𝑤 = 𝑤𝑖 ⇔ 𝑖 = 1𝑤 

 
 
enc(𝑀) = binary string that represents a TM with binary input alphabet: 

• We need to assign integers to each state, tape symbol, and symbols 𝐿 and 𝑅 for directions. 

• rename the states as 𝑞1, 𝑞2, … , 𝑞𝑟. With 𝑞1 initial state, 𝑞2 final state (unique) 

• rename the tape symbols as 𝑋1, … , 𝑋𝑠. With 0 = 𝑋1, 1 = 𝑋2, 𝐵 = 𝑋3 

• rename Directions as 𝐿 = 𝐷1, 𝑅 = 𝐷2 

• transition function 𝛿(𝑞𝑖, 𝑋𝑗) = (𝑞𝑘, 𝑋𝑙, 𝐷𝑚) is encoded as 𝐶𝑖 = 0
𝑖10𝑗10𝑘10𝑙10𝑚. It never 

has two consecutives 1s. 

• For a TM, we concatenate the codes 𝐶𝑖 for all transitions, separated by 11: 𝐶111𝐶211…11𝐶𝑛 
There are several codes for 𝑀, obtained by indexing the symbols and/or listing the transitions in 
different orders. Many binary strings do not correspond to a TM. enc() is not a function. 
 
TM indexing (enumeration): for 𝑖 ≥ 1, the 𝑖-th string that represent the TM 𝑀𝑖  is: 

• if 𝑤𝑖 is a valid encoding representing TM 𝑀, then 𝑀𝑖 = 𝑀 

• if 𝑤𝑖 is not a valid encoding, then 𝑀𝑖  halts immediately for any input. 𝐿(𝑀𝑖) = ∅ 
 
Diagonalization language 𝑳𝒅 = {𝑤|𝑤 = 𝑤𝑖, 𝑤𝑖 ∉ 𝐿(𝑀𝑖)} with 𝑤𝑖 = enc(𝑀𝑖) 

• contains all binary strings 𝑤𝑖 such that the 𝑖-th TM does not accept 𝑤𝑖. 

• NOT RE (proof 09.16). There is no TM that accepts 𝐿𝑑 

• 𝑳𝒅̅̅ ̅ is RE. 

 

The 𝑖-th row indicates if 𝑀𝑖  accept (1) the binary string 𝑤𝑗 

Characteristic vector (𝑖-th row): each 1 indicates that the 
corresponding string (column) belongs to the language. 
 
𝐿𝑑 is the complement of the diagonal. 
If the 𝑖-th element of the diagonal is 0, then 𝑤𝑖 ∉ 𝐿(𝑀𝑖), 𝑤𝑖 ∈ 𝐿𝑑 
The table represents the entire class RE. In fact, a language is in RE 
if and only if its characteristic vector is a row of the table. 
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9.2. Undecidable languages 
Recursive (REC) = decidable = M always stops. There is an 
algorithm to solve the problem. 
RE = M stops just if accept.  
NOT-RE = we can’t compute. Ex. 𝐿𝑑 
RE\REC=semi-decidibile 
 
If 𝑳 is recursive, then �̅� is recursive. (proof 09.20) 
If 𝑳 ∈ 𝑹𝑬 and �̅� ∉ 𝑹𝑬, then 𝑳 is not REC 
If 𝑳 and �̅� are in RE, then 𝑳 is REC. (proof 09.21) 
Possible arrangements for 𝐿 and �̅�: 

• both 𝐿 and �̅� are recursive 

• both 𝐿 and �̅� are not in RE 

• 𝐿 is RE but not recursive, and �̅� is not RE 

• �̅� is RE but not recursive, and 𝐿 is not RE 
 
Universal language 𝑳𝒖 = {enc(𝑀,𝑤)|𝑤 ∈ 𝐿(𝑀)} 

• Is the set of binary strings that encode a pair (𝑀,𝑤) such that 𝑤 ∈ 𝐿(𝑀) 

• Set of binary strings that represent a TM and its accepted strings. 

• enc(𝑀) followed by 111, followed by 𝑤 

• is RE but NOT Recursive (proof 09.30) 

• 𝑳𝒖̅̅ ̅ = {enc(𝑀,𝑤)|𝑤 ∉ 𝐿(𝑀)} is NOT RE 
 
Universal TM 𝑼: 𝐿(𝑈) = 𝐿𝑢 
4 tapes: 

• tape 1: contains the input string enc(𝑀,𝑤) 

• tape 2: simulates M's tape, using the 0𝑗 format for each 𝑋𝑗 tape 

symbol, and 1 as cell separator 

• tape 3 records M's state, using the 0𝑗 format for each state 𝑞𝑗 

• tape 4: auxiliary copying tape, used to enlarge or shrink the 

available space for the 0𝑗 representations in tape 2 
Strategy exploited by 𝑼: 

• if enc(𝑀) is invalid, 𝑈 halts and rejects (in this case 𝐿(𝑀) = ∅) 

• write enc(𝑤) on tape 2, using 10 for 0 = 𝑋1 and 100 for 1 = 𝑋2 

• write the initial state on tape 3, using 0 for 𝑞1, and place the tape 2 head on the first cell 

• search on tape 1 for a transition of the form 0𝑖10𝑗10𝑘10𝑙10𝑚, where: 

o 0𝑖  is the state on tape 3 

o 0𝑗 is M's tape symbol under the tape head of tape 2 

• in order to simulate transition 0𝑖10𝑗10𝑘10𝑙10𝑚, the TM 𝑈: 
o replaces the content of tape 3 with 0𝑘 (new state) 

o replaces 0𝑗 on tape 2 with 0𝑙  (new tape symbol); if needed, we can enlarge or shrink 
𝑈’s tapes using the auxiliary tape (tape 4) 

o move the tape head of tape 2 to the left if  𝑚 = 1 or to the right if 𝑚 = 2, until the 
next 1 is reached (separator) 

• if there is no transition 0𝑖10𝑗10𝑘10𝑙10𝑚, 𝑀 halts and 𝑈 halts 

• if 𝑀 reaches a final state, then 𝑈 halts and accepts 
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Halting problem 𝑳𝑯 = {enc(𝑀,𝑤)|𝑤 ∈ 𝐻(𝑀)} 

• 𝐻(𝑀) = set of strings 𝑤 such that 𝑀 halts with input 𝑤 

• There exist a TM 𝑀 such that 𝐿(𝑀) = 𝐿𝐻: 𝑀 takes as input a pair enc(𝑀′,𝑤) and simulates 
a computation of 𝑀′ on 𝑤. 

• 𝑳𝑯 is RE but not Recursive 
It means that there is no algorithm that can state whether a given program ends or not on a given 
input. 
However, there exists a procedure that 

• halts, if a given program ends on a given input 

• cycles, if a given program does not end on a given input 
 

9.3. Undecidable problems 
 
Given a problem 𝑷𝟏 known to be difficult, we want to know whether a second problem 𝑃2 under 
investigation is as hard as, or even harder than, 𝑃1 
If we could solve 𝑃2, then we could also solve 𝑃1, written as 𝑃1 ≤𝑚 𝑃2 
 
Reduction of 𝑷𝟏 to 𝑷𝟐: 𝑃1 ≤𝑚 𝑃2 

• If 𝑃1 is undecidable, so is 𝑃2 (proof 09.37) 

• If 𝑃1 is not RE, so is 𝑃2 (proof 09.38) 
is an algorithm (TM) that converts an instance 𝒙 of 𝑷𝟏 into an instance 𝒚 of 𝑷𝟐, such that 

• if 𝑥 has positive answer then 𝑦 has positive answer (yes to yes) 

• if 𝑥 has negative answer then 𝑦 has negative answer (no to no) 
 
Solve 𝑃1 by converting it to 𝑃2 and using a subroutine for 𝑃2 
𝑃1 is converted in a subset of instances of 𝑃2 so 𝑃2 can be larger 
(harder) than 𝑃1 
 
Let 𝑃1 ≤𝑚 𝑃2, and assume there exists an algorithm that solves 𝑃2. Given an instance 𝑥 for 𝑃1: 

• we use the reduction to convert 𝑥 to an instance 𝑦 for 𝑃2 

• we use the algorithm for 𝑃2 to decide whether 𝑦 in 𝑃2 or not 
Whatever the answer is, it is also valid for 𝑥 in 𝑃1 
We have built an algorithm that solves 𝑃1. Thus solving 𝑃2 is at least as difficult as solving 𝑃1 
 
Let 𝑃1 ≤𝑚 𝑃2: (proof 09.37) 

• If 𝑃1 is undecidable, so is 𝑃2  

• If 𝑃1 is not RE, so is 𝑃2 
 
Language 𝑳𝒆 = {enc(𝑴)|𝑳(𝑴) = ∅} 

• NOT RE. (proof 09.44) 

• Set of strings that represents encodings of TMs that accepts empty languages. 
Language 𝑳𝒏𝒆 = 𝑳𝒆̅̅ ̅ = {enc(𝑴)|𝑳(𝑴) ≠ ∅} 

• RE but not Recursive. (proof 09.40-42) 

• Set of strings that represents encodings of TMs that accepts non-empty languages. 
Both are undecidable. 
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Property 𝑷 of RE languages: subset of RE languages that satisfy the property 𝑃 
Trivial Property: if it is satisfied by all RE languages or by none of the RE languages. 

• 𝑃 = 𝑅𝐸 or 𝑃 = ∅ 
Language 𝐿𝑃 = {enc(𝑀𝑖)|𝐿(𝑀𝑖) ∈ 𝑃} set of encodings of all TMs 𝑀𝑖  such that 𝐿(𝑀𝑖) ∈ 𝑃 
𝑃 is decidable if and only if 𝐿𝑃 is recursive 
 
Rice's theorem: any nontrivial property of RE languages is undecidable (is not Recursive). 
This means that, for any nontrivial property 𝑃, there is NO TM that 

• always halts 

• given as input enc(𝑀𝑖), decides whether the language 𝐿(𝑀𝑖) satisfies 𝑃 
Proof: 
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9.4. How to solve Exercises 
 
Show a language 𝑳 is in REC:  

• provide a TM that always halts, and accept the string in the language 

• OR prove 𝐿 and �̅� are in RE. So 𝐿 is REC 
Show a language 𝑳 is in RE: provide a TM that halts for all the string in the language. 
Show a language 𝑳 is in RE\REC: 

• show it is in RE 

• show it is not in REC (possibly by doing a reduction: 𝐿𝑘𝑛𝑜𝑤𝑛 𝑛𝑜𝑡 𝑖𝑛 𝑅𝐸𝐶 ≤𝑚 𝐿) 
Show a language 𝑳 is NOT RE: reduction 𝐿𝑘𝑛𝑜𝑤𝑛 𝑛𝑜𝑡 𝑖𝑛 𝑅𝐸 ≤𝑚 𝐿 
 
Given property 𝑷 tell if 𝑳𝑷 is not Recursive: show that 𝑃 is not trivial 

• 𝑃 ≠ ∅: find at least 1 𝑅𝐸 language that ∈ 𝑃 

• 𝑃 ≠ 𝑅𝐸: find at least 1 𝑅𝐸 language that ∉ 𝑃 

• By rice theorem, 𝐿𝑃 is not Recursive 
 
Given property 𝑷 tell if 𝑳𝑷 is RE: Build a TM that accept 𝐿𝑃 

• 𝑀𝑃 receives as input a string 𝑧 and checks if it is a valid encoding enc(M) of some TM 𝑀. If 
not, then 𝑀𝑃 halts in a non-final state. 

• 𝑀𝑃 simulates 𝑀 on input 𝑤. If 𝑀 accepts, then 𝑀𝑃 also accepts. 

• Then prove that it has the yes/no property. Map yes->yes and no->not halt. 
o Yes->Yes: if 𝑤 ∈ 𝑀 then …., then,…, then 𝑀𝑃 accept 
o No->Not halt: if 𝑤 ∉ 𝑀 then …., then,…, then 𝑀𝑃 not halt 

 
 
Tell if a language 𝑳 is NOT RE: reduce a non-RE language to 𝐿 
Reduce a language to another one: 

• Draw the schema of the reduction, it is a TM that always halts that has as input an instance 
of the known language and transform it on an instance the language given. 

• Then prove that it has the yes/no property. Map yes->yes and no->no. 
o Yes->Yes: if 𝑤 ∈ 𝐿𝑘𝑛𝑜𝑤𝑛 then …., then,…, then 𝑒𝑛𝑐(… ) ∈ 𝐿 
o No->No: if 𝑤 ∉ 𝐿𝑘𝑛𝑜𝑤𝑛 then …., then,…, then 𝑒𝑛𝑐(… ) ∉ 𝐿 

OR prove that L is not recursive but its complement is RE, then L is not RE 
 
Given an arbitrary string 𝑥, construct a special string 𝑦, such that 𝑦 ∈ 𝐿 if and only if 𝑥 ∈ 𝐿𝑘𝑛𝑜𝑤𝑛 
This proof almost always requires two separate steps: 

• Prove that if 𝑥 ∈ 𝐿𝑘𝑛𝑜𝑤𝑛 then 𝑦 ∈ 𝐿 

• Prove that if 𝑥 ∉ 𝐿𝑘𝑛𝑜𝑤𝑛 then 𝑦 ∉ 𝐿 
 
Tricks for exercises: 

• Universal TM gets in input enc(M) and 𝑤, accept if w in L(M)  

• NTM can “guess” (generate) a string w. Or guess a factorization w=xy. Or guess multiple 
strings. 

• TM can implement a for loop over the length of the input string, giving the index as input to 
other TM or Halting if reach the end of the for loop. 

• 𝑀∅ TM that accept the emptyset. Used in reductions when we have more TM than the input. 
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• 𝑀𝑤 TM that accept only 𝑤. 𝐿(𝑀𝑤) = {𝑤}. Used in reduction, having as input 𝑤 we can 
return enc𝑀𝑤 

• 𝑀𝜖 𝐿(𝑀𝜖) = {𝜖} 
• Generator that generate all pairs (𝑖, 𝑗) st 𝑖 + 𝑗 = 𝑘 for all possible 𝑘. Used to create a string 
𝑤𝑖 and simulate it on a TM for at maximum 𝑗 steps. Used to avoid infinite computations. 

• A TM can simulate a TM given as input enc(M) 

• TM on input 𝑤, finds the index 𝑖 such that𝑤𝑖 = 𝑤, and returns as output the string 
enc(𝑀𝑖, 𝑤𝑖) 
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9.5. Post’s correspondence problem (PCP) 
Undecidable problem used to show that other problems are undecidable. (proof 09.71) 
 
Definition: given two equal length lists of strings, tell if it’s possible to choose a sequence from each 
list such that it’s concatenation is equal. 
 
Problem Instance (𝐴, 𝐵): 

• 𝐴 = 𝑤1, … , 𝑤𝑘 
• 𝐵 = 𝑥1, … , 𝑥𝑘 
• Where 𝑤𝑖, 𝑥𝑗 ∈ Σ

+ and Σ is an alphabet with at least two symbols. 

Has a solution if there are 𝑚 ≥ 1 indices 𝑖1, … , 𝑖𝑚 such that 𝑤𝑖1𝑤𝑖2 …𝑤𝑖𝑚 = 𝑥𝑖1𝑥𝑖2 …𝑥𝑖𝑚  

 
 
Modified Post's correspondence problem MPCP: additional constraint that (𝑤1, 𝑥1) must be the 
starting string, and 𝑚 can be 0. 𝑤1𝑤𝑖1…𝑤𝑖𝑚 = 𝑥1𝑥𝑖1…𝑥𝑖𝑚 
 
Reduction 𝑳𝒖 to MPCP: Transform  (𝑀,𝑤) instances of 𝐿𝑢 to instances (𝐴, 𝐵) of the MPCP. 

• semi-infinite tape TM with ID's without any blank. 

• represent M's computations as strings of the form #𝛼1#𝛼2#… where each 𝛼𝑖 is an ID. 

• we use fictitious ID's that erase the tape when a  final state is reached (needed to realign) 

• partial solutions of (𝐴, 𝐵) simulate computations of 𝑀 on 𝑤 

• in a partial solution, the list obtained by 𝐴 is always one ID behind with respect to the list 
obtained by 𝐵. 

𝑙𝐴: #𝛼1…#𝛼𝑖−1 
𝑙𝐵: #𝛼1…#𝛼𝑖−1#𝛼𝑖 

• The pairs (𝑤𝑖, 𝑥𝑖) are used, through several steps, to 
o copy #𝛼𝑖  from 𝑙𝐵 to 𝑙𝐴 
o add to 𝑙𝐵 the new string #𝛼𝑖+1, which simulates the next move of 𝑀 

Transformation of (𝑀,𝑤): 

• Pairs of type 1: initial ID 

 
• Pairs of type 2: copy tape symbol and # 

 
• Pairs of type 3: simulate next move for 𝑞 ∈ 𝑄\𝐹 

 
• Pairs of type 4 : for 𝑞 ∈ 𝐹, erase working tape 
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• Pairs of type 5: align the two lists, after the tape has been erased 

 
Example: 

 

 

 
 
 
 
Reduction MPCP to PCP: not this year 
 

 
𝐿𝑢 ≤𝑚 𝑀𝑃𝐶𝑃 (proof 09.70) 
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9.6. Other undecidable problems 
 
CFG ambiguity: 

• the instances are the strings enc(𝐺) where 𝐺 is a CFG 

• the answer is positive if 𝐺 is ambiguous 
We define the corresponding language 𝐿𝐴𝑀𝐵 = {enc(𝐺) |𝐺 is ambiguous} 
 
Reduction (transformation) of PCP to 𝑳𝑨𝑴𝑩 instances: 

• Given an instance of PCP (𝐴, 𝐵) over alphabet Σ, where 𝐴 = 𝑤1, … , 𝑤𝑘 and 𝐵 = 𝑥1, … , 𝑥𝑘 

• 𝐺𝐴 ∈ 𝐶𝐹𝐺 
o Nonterminal set {𝐴} 
o Alphabet Σ ∪ {𝑎𝑖|1 ≤ 𝑖 ≤ 𝑘} where 𝑎𝑖 is an alias for the pair 𝑤𝑖 , 𝑥𝑖 
o Production set: 

▪ 𝐴 → 𝑤1𝐴𝑎1|𝑤2𝐴𝑎2| … |𝑤𝑘𝐴𝑎𝑘 
    → 𝑤1𝑎1|𝑤2𝑎2| … |𝑤𝑘𝑎𝑘  

• 𝐺𝐵 ∈ 𝐶𝐹𝐺 
o Nonterminal set {𝐵} 
o Alphabet Σ ∪ {𝑎𝑖|1 ≤ 𝑖 ≤ 𝑘} where 𝑎𝑖 is an alias for the pair 𝑤𝑖 , 𝑥𝑖 
o Production set: 

▪ 𝐵 → 𝑥1𝐵𝑎1|𝑥2𝐵𝑎2| … |𝑥𝑘𝐵𝑎𝑘 
    → 𝑥1𝑎1|𝑥2𝑎2| … |𝑥𝑘𝑎𝑘  

• 𝐺𝐴 and 𝐺𝐵 are unambiguous 

• We define 𝐿𝐴 = 𝐿(𝐺𝐴) and 𝐿𝐵 = 𝐿(𝐺𝐵) 

• 𝐺𝐴𝐵 is the set CFG that generates the language 𝐿𝐴 ∪ 𝐿𝐵 
o Nonterminal set {𝑆, 𝐴, 𝐵} 
o Alphabet Σ ∪ {𝑎𝑖|1 ≤ 𝑖 ≤ 𝑘} 
o Product set 𝑆 → 𝐴|𝐵 and in addition all productions of 𝐺𝐴 and 𝐺𝐵 

 
𝑃𝐶𝑃 ≤𝑚 𝐿𝐴𝑀𝐵  (proof 09.77) 
 
Following CFG problems are undecidable: 

• 𝐿(𝐺1) ∩ 𝐿(𝐺2) = ∅? 

• 𝐿(𝐺1) = 𝐿(𝐺2)? 

• 𝐿(𝐺1) = 𝐿(𝑅)? 

• 𝐿(𝐺1) = 𝑇
∗, for a fixed alphabet 𝑇? 

• 𝐿(𝐺1) ⊆ 𝐿(𝐺2)? 

• 𝐿(𝑅) ⊆ 𝐿(𝐺1)? 
 
From Rice theorem the following TM problems are undecidable 

• is the language accepted by a TM the empty language? 

• is the language accepted by a TM a finite language ? 

• is the language accepted by a TM a regular language ? 

• is the language accepted by a TM a context-free language ? 

• does the language accepted by a TM contain the string “ab”? 

• does the language accepted by a TM contain all even numbers ? 
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10. Intractability 
 
Intractable problem: if the time needed to solve it (decide it) is more than polynomial. 
The problems that can be solved in polynomial time on a computer coincide with polynomial time 
solvable problems on TMs. 
 

10.1. Classes 𝑷 and 𝑵𝑷 
TM 𝑀 has time complexity 𝑻(𝒏) if, given as input a string 𝑤 with |𝑤| = 𝑛, 𝑀 halts after at most 
𝑇(𝑛) computational steps. 
 
A language (decision problem) 𝑳 belongs to the class 𝑷 if there exists a polynomial 𝑇(𝑛) such that 
𝐿 = 𝐿(𝑀) for some deterministic TM 𝑀 with time complexity 𝑇(𝑛) 
 
A language (decision problem) 𝑳 belongs to the class 𝑵𝑷 if there exists a polynomial function 𝑇(𝑛) 
such that 𝐿 = 𝐿(𝑀) for some NON-deterministic 𝑀 with time complexity 𝑇(𝑛) 
 
We can always assume that M performs exactly 𝑇(𝑛) moves for every input of length 𝑛: to this end, 
we can simulate a clock function on a special tape track. 
𝑃 ⊆ 𝑁𝑃: every TM is also a NTM 
A polynomial NTM can perform an exponential number of computations simultaneously. Therefore, 
it is commonly assumed that 𝑃 ≠ 𝑁𝑃, but there is not a formal proof yet. 
 
Show that a problem 𝑷𝟐 ∉ 𝑷 (cannot be solved in polynomial time): reduce a problem 𝑃1 ∉ 𝑃 to 𝑃2 

 
(polynomial reduction) 

We impose the additional constraint that the reduction operates in polynomial time, 𝑃1 ≤𝑝 𝑃2. 

If 𝑃1 ≤𝑝 𝑃2 and 𝑃1 ∉ 𝑃 then 𝑃2 ∉ 𝑃 

 
A language 𝐿 is 𝑵𝑷-complete if 

• 𝐿 ∈ 𝑁𝑃 
• for each language 𝐿′ ∈ 𝑁𝑃 we have 𝐿′ ≤𝑝 𝐿 

NP-complete problems are the most difficult problems in NP. 
If 𝑃 ≠ 𝑁𝑃 then 𝑁𝑃-complete problems are in 𝑁𝑃\𝑃 
If 𝑃1 is 𝑁𝑃-complete, 𝑃2 ∈ 𝑁𝑃, 𝑃1 ≤𝑝 𝑃2 then 𝑃2 is 𝑁𝑃-complete. (proof 10.20) 

 
If an 𝑁𝑃-complete problem is in 𝑃 then 𝑃 = 𝑁𝑃. (proof 10.21)  

 
 
A language 𝐿 is 𝑵𝑷-hard if, for each language 𝐿′ ∈ 𝑁𝑃 we have 𝐿′ ≤𝑝 𝐿 

We do not require membership in 𝑁𝑃. 𝐿 could be much more difficult than the problems in 𝑁𝑃. 
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10.2. Satisfiability problem (SAT) 
Deciding whether a Boolean expression is satisfiable is an NP-complete problem. 
 
Boolean expressions are composed by the following symbols 

• an infinite set {𝑥, 𝑦, 𝑧, 𝑥1, 𝑥2, … } of variables defined on Boolean values 1 (true) and 0 (false) 

• binary operators ∧ (logical AND) and ∨ (logical OR) 

• unary operator ¬ (logical NOT) 

• round brackets (to force precedence) 
Recursively defined as: 

• 𝐸 = 𝑥, for any Boolean variable 𝑥 

• 𝐸 = 𝐸1 ∧ 𝐸2 and 𝐸 = 𝐸1 ∨ 𝐸2 

• 𝐸 = ¬𝐸1 
• 𝐸 = (𝐸1) 

Operator precedence (decreasing): ¬, ∧, ∨ 
 
Truth assignment 𝑇 for a Boolean expression 𝐸 assigns a Boolean value 𝑇(𝑥) (true or false) to each 
variable 𝑥 in 𝐸 
The Boolean value 𝐸(𝑇) of 𝐸 under 𝑇 is the result of the valuation of 𝐸 with each variable 𝑥 replaced 
by 𝑇(𝑥). 
𝑇 satisfies 𝐸 if 𝐸(𝑇) = 1 
𝐸 is satisfiable if there exists at least one 𝑇 that satisfies 𝐸 
 
Satisfiability problem (SAT): 

• input: is a Boolean expression 𝐸 

• output: “YES” if 𝐸 is satisfiable, “NO” otherwise 
 
Boolean expression encoding: 

• We rename the variables as 𝑥1, 𝑥2, … and encode them using symbol 𝑥 followed by a binary 
representation of the index. Ex: 𝑥13 = 𝑥1101 

• Logical operators and parentheses are represented by themselves 
enc(𝐸) has length 𝑂(𝑚 log𝑚), which is a polynomial function of 𝑚  
The SAT language is formed by the set of all Boolean expressions that are well-formed, properly 
coded, and satisfiable. 
 
Cook Theorem: SAT is an NP-complete language. (proof 10.32, NO EXAM) 
 
Simplified version of SAT (3SAT): 

• NP-complete problem  

• convenient to define reductions 
Literal is a variable or else the negation of a variable. 
Clause is the disjunction (logical OR) of literals. 
Boolean expressions in conjunctive normal form (CNF) is a conjunction (logical AND) of clauses. 
k-conjunctive normal form (k-CNF): CNF in which every clause has exactly 𝑘 literals. 
 
CSAT: is some CNF satisfiable ? NP-Complete 
kSAT: is some k-CNF satisfiable? 
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10.3. Other NP-complete problems 
Finding out that a decision problem is NP-complete indicates that there are very few chances to 
discover an efficient algorithm for its solution. It is therefore recommended to look for 
partial/approximate solutions, using heuristics. 
Definition schema: 

• Problem: name of the problem 

• Input: representation/encoding 

• Output: when the output is YES 

• Reduction from: 
 

10.3.1. Independent set (IS) problem 
𝐺 undirected graph. 
Independent set: subset 𝐼 of nodes of 𝐺 such that no pairs of nodes in 𝐼 is connected by arcs of 𝐺. 
Maximal Independent set: if any other independent set of 𝐺 has a number of nodes smaller or equal 
than the former. 
 

• Problem: independent set (IS) 

• Input: undirected graph 𝐺 and lower bound 𝑘 

• Output: YES if and only if 𝐺 has an independent set with 𝑘 nodes 

• Reduction: from 3SAT 
 
NP-complete. (proof 10.62) 
 

10.3.2. Node cover (NC) problem 
𝐺 undirected graph. 
Node Cover: subset 𝐶 of nodes of 𝐺 such that each arc of 𝐺 touch at least one node in 𝐶 
Minimal Node Cover: every other node cover has at least the size 
 

• Problem: node cover (NC) 

• Input: undirected graph 𝐺 and upper bound 𝑘 

• Output: YES if and only if 𝐺 has a node cover with at most 𝑘 nodes 

• Reduction: from IS 
 
NP-complete. (proof 10.71) 
 

10.3.3. Directed Hamiltonian circuit (DHC) problem 
𝐺 directed graph. 
Directed Hamiltonian circuit: oriented cycle that passes through each node of 𝐺 exactly once 
 

• Problem: directed Hamiltonian circuit (DHC) 

• Input: directed graph 𝐺 

• Output: YES if and only if 𝐺 has a directed Hamiltonian circuit 

• Reduction: from 3SAT 
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• Problem: undirected Hamiltonian circuit (HC) 

• Input: undirected graph G 

• Output: YES if and only if 𝐺 has an undirected Hamiltonian circuit 

• Reduction : from DHC 
 

• Problem: traveling salesman problem (TSP) 

• Input: undirected graph 𝐺 with integer weights at every arc, and upper bound 𝑘 

• Output: YES if and only if 𝐺 has an undirected Hamiltonian circuit such that the sum of the 
weights at each arc is smaller equal than 𝑘 

• Reduction: from HC 
 
Summary of our reductions: 
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Exam Questions 
 
You can study them for free as flashcard at https://www.brainscape.com/p/3YF5P-LH-BBQSC  
 
Regulars 2-3-4: 

• Theory: 
o Subset construction. Proof L(DFA)=L(NFA). (19-09-13, 20-01-27, 21-06-28,  
o Definition of equivalent pair states of a DFA (21-01-25,  
o Provide the mathematical definition of language L*. Provide a rigorous proof that 

(L*)* = L*. (21-06-28, slides 03.38,  
o Tell why Regular languages are closed under reverse operator (theorem 4.11, 22-01-

26,  

• Given DFA, prove that L(A)=L: 
o Exams: 20-02-17, 21-01-25, 
o PDF: 1.1,  
o Slides: 2.30,  

• Given Language, construct NFA, convert NFA in DFA. 
o PDF: 1.3,  
o Slide: 02.50, 02.55,  
o Book: section 2.3 

• Given language tell if it’s Regular (pumping) 
o Exams: 19-01-22, 19-06-28, 19-09-13, 20-02-17, 21-02-12, 21-09-03, 
o PDF: 1.4, 1.6 
o Slides: 04.16,  

• Convert FA in Regular Expression: 
o Exams: 19-01-22, 21-02-12,  
o Slides: 03.28,  
o Book: section 3.2 

• Convert Regular Expression in e-NFA: 
o Exams: 19-06-28, 21-09-03, 
o Book: section 3.2 

• Given generic L1 and L2, tell if intersection/concatenation/… is regular/not regular 
o Slide 4.31, 

• Given DFA, apply Tabular algorithm states equivalence and reduce to its minimum 
o Exams: 19-02-13, 21-01-25, 

 
CFL 5-6-7: 

• Theory: 
o Tell why CFL is not open to the complement operation. The complement of a CFL is 

always recursive? (19-09-13, 
o Show that the class of context-free languages is not closed under intersection. 

Specify in detail the construction that takes as input a PDA P and a DFA A and 
produces a PDA P’ that accepts the language L(P)∩L(A). (21-02-12, 

• Given L, build the grammar G. Then prove that L=L(G) by mutual induction. 
o Exams: 19-01-22, 21-09-03, 
o PDF: 2.1 

• Given L, tell if its context-free (pumping). 

https://www.brainscape.com/p/3YF5P-LH-BBQSC
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o Exams: 19-02-13, 20-01-27, 21-01-25, 21-06-28, 22-01-26,  
o PDF: 2.2, 2.3, 2.4, 2.5, 2.6,  
o Slide: 7.2.16 

• Given generic L1 and L2, tell if intersection/concatenation/… is regular/context free. 
o Exams: 19-02-13, 20-01-27, 21-09-03, 22-01-26,  
o PDF: 2.7,  
o Slide: 7.2.42 

• Given grammar G, remove e-prod, reduce to chomsky  
o Exams: 19-09-13, 20-02-17(22-01-26 same),  
o Slide: 7.1.40 

• Algorithm to verify if string is in language (also specify the algorithm) 
o Exams: 19-06-28, 21-06-28, 

• Is CFL closed to the operator P(L)={…}?: 
o PDF: 2.8 

 
Recursive 8-9: 

• Theory: 
o Define the notion of property of the languages generated by TMs and state Rice's 

theorem. Provide the proof of Rice's theorem that we have developed in class. (21-
09-03,  

o definizione di macchina di Turing nondeterministica e la definizione di linguaggio da 
questa accettato. Dimostri che ogni linguaggio accettato da una macchina di Turing 
nondeterministica può essere accettato da una macchina di Turing deterministica. 

o Richiamare la definizione del linguaggio Lne. Dimostrare che Lne non appartiene 
alla classe REC. Attenzione: è richiesta la dimostrazione svolta in classe per questo 
teorema, non utilizzare il teorema di Rice. (20-02-17, 

• Given property P over RE, tell if Lp is REC/RE/NON-RE. 
o Exams: 19-01-22, 20-01-27, 20-02-17, 21-01-25, 21-02-12, 21-06-28,  
o PDF: 3.4, 3.5, 3.6, 3.7, 3.8,  

• Given L1 and L2, tell if intersection/concatenation/... are RE/REC/… 
o Exams: 19-01-22, 21-01-25,  
o PDF: 3.10,  

• Given L={enc(M),…}, tell if L is RE (reduction) 
o Exams: 19-02-13, 19-01-22, 19-09-13, 21-02-12, 21-06-28, 22-01-26,  
o PDF: 3.9, 3.10.3, 3.11, 3.12,  

• Given L, specify Turing machine M that accepts it and stops for each input. 
o Exams: 19-06-28, 
o PDF: 3.1, 3.2, 3.3,  

 
Intractable 10: (this year every exam will have a question of this chapter 2022) 

• Theory:  
o Siano P1 e P2 due problemi appartenenti alla classe NP. (20-01-27,  

▪ Richiamare la nozione di riduzione polinomiale di P1 a P2 
▪ definizione di problema NPcompleto. 
▪ Dimostrare che se P1 è NP-completo e se esiste una riduzione polinomiale di 

P1 a P2, allora anche P2 `e NP-completo. Perchè è cruciale cha la riduzione 
utilizzata impieghi tempo polinomiale? 
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o If 𝑃1 is 𝑁𝑃-complete, 𝑃2 ∈ 𝑁𝑃, 𝑃1 ≤𝑝 𝑃2 then 𝑃2 is 𝑁𝑃-complete. (proof 10.20)  

o If an 𝑁𝑃-complete problem is in 𝑁𝑃 then 𝑃 = 𝑁𝑃. (proof 10.21)  
o The class P of languages that can be recognized in polynomial time by a TM is closed 

under intersection with regular languages. (22-01-26,  

• Reduction exercise: 21-02-12.e4 
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