

NOTES OF

Web Applications
SUBTITLE

(Version 22/05/2021)

Edited by:
Stefano Ivancich

CONTENT

1. Introduction to Webapps ... 1

2. Git .. 3

3. Maven .. 5

4. Java Servlet ... 9

4.1. Technologies for Web applications .. 9

4.2. Java Servlet ... 10

4.3. Apache Tomcat ... 12

4.4. SQL Injection ... 13

4.5. Examples ... 14

4.6. Java Servlets and Access to the Database .. 18

5. Java Server Pages (JSP) ... 25

5.1. JavaServer Pages ... 25

5.2. Model-View-Controller ... 28

6. HTTP and REST .. 29

6.1. URL... 29

6.2. MIME ... 31

6.3. HTTP 1.1 .. 33

6.4. The REST architectural paradigm ... 39

6.5. AJAX ... 41

7. Markup Languages .. 42

7.1. Markup languages... 42

7.2. HTML ... 43

7.3. XML .. 44

7.4. JSON... 48

8. HTML ... 49

8.1. Main Elements .. 49

8.2. HTML5 New Elements ... 57

9. CSS ... 60

9.1. Introduction to CSS ... 60

9.2. Color Property ... 62

9.3. The box Model .. 63

9.4. Floating and Positioning ... 66

9.5. Responsive Web Design .. 68

10. Javascript ... 71

10.1. Introduction to JavaScript .. 71

10.2. Core JavaScript .. 72

10.3. The Document Object Model ... 75

10.4. Handling events .. 78

10.5. Form Validation... 81

10.6. AJAX – Scripted HTTP .. 83

10.7. jQuery .. 86

10.7.1. Introduction to jQuery .. 86

10.7.2. jQuery Getters and Setters ... 87

10.7.3. Altering the DOM Structure.. 89

10.7.5. AJAX with jQuery .. 91

11. Bootstrap and Font Awesome .. 94

11.1. Bootstrap ... 94

11.2. Font Awesome .. 97

12. Semantic Web ... 98

Questions .. 101

This document was written by students with no intention of replacing university materials. It is a
useful tool for the study of the subject but does not guarantee an equally exhaustive and complete
preparation as the material recommended by the University.
The purpose of this document is to summarize the fundamental concepts of the notes taken during
the lesson, rewritten, corrected and completed by referring to the to be used as a "practical and
quick" manual to consult. There are no examples and detailed explanations, for these please refer
to the cited texts and slides.

If you find errors, please report them here:
www.stefanoivancich.com
ivancich.stefano.1@gmail.com
The document will be updated as soon as possible.

http://www.stefanoivancich.com/
mailto:ivancich.stefano.1@gmail.com

1

1. Introduction to Webapps

Distributed Applications

Application Layers:

• Presentation/Interface/User Logic: manages the interaction with the user, defines the
format and visualization of information, accepts and validates user input.

• Application/Business Logic: defines and controls the flow of operations in, the application
defines the basic operations on the data and their constraints, often called business rules.

• Data Logic: manages the persistent storage of the data, searches and retrieves data, ensures
consistency of the data.

Balancing of the Application Load

• Single-tier architectures: Terminal/Mainframe. (Uni clusters, Banks…)
o Pros: easy to implement, no management of the terminals
o Cons: computational load fully on the mainframe (single point-of-failure),

scalability.

• Two-tiers architectures:

o Fat Client/Server:
▪ Pros: easy to implement, possibility to balance load
▪ Cons: client maintenance, scalability

o Client/Fat Server

▪ Pros: easy to implement, possibility to balance load
▪ Cons: client maintenance, scalability

2

• Three-tiers architectures: Client/Middleware/Server
o Pros: easy client maintenance, possibility to balance load, high scalability.
o Cons: higher implementation complexity

Web Applications:

• are an instance of a three-tiers architecture.

• are based on standard and ubiquitous technologies (server-side), typically already part of an
organization IT infrastructure.

• Do not require any management of the clients (browser)

• Clients are ubiquitous and allow access from any kind of devices (desktop and mobile)

• Users are already comfortable with the basic interaction patterns and interface elements.

3

2. Git

Introduction to Git

• A version control system manages the versions, called revisions, of
files and directories.

• Manages conflicts, e.g. when the same file is edited concurrently, and
their resolution (merge)

• Centralized approach (cvs, svn):
o a single central repository manages all the versions of files and

directories, allowing us to keep track of all the changes over
time

o the client uses a local copy of the files and keeps the
synchronization with the central repository

• Distributed approach (git):
o the local copy of every client is a complete repository
o the synchronization happens exchanging patches among peers

• Code development is modelled ad a directed graph where, from the
main development line (master), alternative development lines (branch) and/or stable
versions (tag) can depart and join.

Create a new repository: git init
Clone: git clone username@host:/path/to/repos

Workflow:

• Working directory: keeps the actual files and directories, which may or may not be
unversioned

• Index: is a staging area

• HEAD: represents the last commit made

Add files/directories to the Index: git add <filename>
Confirm updates and add the to the HEAD: git commit -m “Description”
Send committed updates to a remote server: git push origin master

• master (or any other name) is the repository branch to send to the remote server

• origin indicates the default remote repository, e.g. the one from which we cloned the
repository

Create a new branch: git checkout -b <branch-name>
Get back to the master branch (or any other branch name): git checkout master
Send a branch to the remote repository: git push origin <branch-name>

Update a local repository: git pull origin <branch-name>

4

Merge a branch into the current branch: git merge <branch-name>

Pull Request: functionality given by platforms, is a mechanism for a developer to notify team
members that they have completed a feature.
This lets everybody involved know that they need to review and discuss the code and, eventually,
merge it into the master branch.

.gitignore file has to be put in the root folder of your development tree.
It specifies intentionally untracked files that Git should Ignore.
Each line specifies a pattern to be matched to decide whether to exclude files and/or directories.

README file has to be put in the root folder of your development tree.
Provides overall information about your project

5

3. Maven
Maven is a tool for managing Java software projects and supporting developers in keeping track of
the status of a project: build, dependency management, deployment and packaging, collaboration
and documentation.
Advantages

• coherence: standardization of the management of Java project, increased transparency and
reduced time to get an understanding of the different projects of an organization.

• reuse: similar projects can reuse and extend the setup of previous projects.

• simplicity: simplification of the creation and integration of new components as well as of the
sharing of packages and executables. Moreover, the learning curve for each project is
reduced.

• maintenance: reduced effort and resources to keep building scripts as well as development
and deployment environments.

Main Concepts:

• Software development happens according to a life cycle made up of phases.

• Zero or more goals are associated to each phase and they are the operations actually carried
out in that phase.

• Goals are implemented by means of plugins and each plugin may implement one or more
goals.

• The Project Object Model (POM) is a single XML file which puts together, in a declarative
way, phases, goals and plugins for a project.

Build Lifecycle:

• A build lifecycle is needed to create, compile, integrate, test, and distribute a software
project.

• The phases of a lifecycle are executed in sequence to complete that Lifecycle.
o if you invoke an intermediate phase of a lifecycles, all the phases up to that phase

will be execute.
o if you invoke the last phase, all the phases will be executed.

• Predefined build lifecycles:
o clean: manages the cleaning of the project, i.e. it deletes all the files generated by a

build.
o default: manages the whole development of the project.
o site: manages the creation of a project site and of the documentation.

6

Default Build LifeCycle:

• Setup of the project
o validate: validates the project is correct and all necessary information is available.
o initialize: initialize build state, e.g. set properties or create directories.

• Source processing
o generate-sources: generates any source code for inclusion in compilation
o process-sources: processes the source code, for example to filter any values
o generate-resources: generates resources for inclusion in the package
o process-resources: copies and processes the resources into the destination

directory, ready for packaging
o compile: compiles the source code of the project
o process-classes: post-processes the generated files from compilation, for example to

do bytecode enhancement on Java classes.

• Testing:
o generate-test-sources: generates any test source code for inclusion in compilation.
o process-test-sources: processes the test source code, for example to filter any values
o generate-test-resources: creates resources for testing.
o process-test-resources: copies and processes the resources into the test destination

directory.
o test-compile: compiles the test source code into the test destination directory.
o process-test-classes: post-processes the generated files from test compilation, for

example to do bytecode enhancement on Java classes.
o test: runs tests using a suitable unit testing framework. These tests should not

require the code be packaged or deployed.

• Packaging
o prepare-package: performs any operations necessary to prepare a package before

the actual packaging.
o package: takes the compiled code and package it in its distributable format, such as

a JAR.

• Integration
o pre-integration-test: performs actions required before integration tests are

executed. This may involve things such as setting up the required environment.
o integration-test: process and deploy the package if necessary into an environment

where integration tests can be run.
o post-integration-test: performs actions required after integration tests have been

executed. This may including cleaning up the environment

• Deployment
o verify: runs any checks to verify the package is valid and meets quality criteria
o install: installs the package into the local repository, for use as a dependency in other

projects locally
o deploy: done in an integration or release environment, copies the final package to

the remote repository for sharing with other developers and project.

7

Default Build Lifecycle for JAR Packages

Project Object Model (POM):

• Relationships: defines the structure of the project (coordinates and modules), its
relationships with other projects (inheritance), dependencies on other projects and libraries

• General project information: maintains general information about the project, such as,
project name, project Web site, organization developing the project, developers, licences

• Build settings: customizes the default build lifecycle by adding goals and plugins to the
different phases as well as information about source, test, and resources

• Build environment: defines profiles corresponding to different environments and/or
operating systems.

8

Maven Repositories:

Setting up Maven: the settings.xml file
Contains the overall configuration for Maven where to store the local cache for libraries and plugins,
the configuration about a local repository, if any, and credentials to access it.
Has to be saved in the .m2 folder in each own home. If it does not already exist, you need to create
it.

Running Maven: mvn [options] [<goal(s)>] [<phase(s)>]

• phase: one or more phase names according to the available build lifecycles. Remember that
all the phases up to the selected one(s) will be executed.

• goal: one or more goal names to be executed goal names have the following format:
<plugin-name>:<goal-name>

Example: mvn clean deploy checkstyle:check

• invokes the clean phase of the clean build lifecycle

• invokes the deploy phase (and all the phases before it) of the default build lifecycle

• invokes the check goal of the checkstyle plugin.

9

4. Java Servlet

4.1. Technologies for Web applications
Browser and Server Architecture

Static resources: files
Dynamic resources: created on the fly
Logging: logs request done do the webserver, managed by the webserver

Some technologies:

CGI: common gateway interfaces, external to the process of the web server
Programs: compiled and executed
Script: interpreted
Fronted: programs are dead. Now we use scripts.

10

4.2. Java Servlet

Java Enterprise Edition (Java EE) platform aims at:

• standardize and reduce the complexity of developing multi-tiered enterprise applications.

• provide specific API for Web development, e.g. servlet, REST
Web container: implements the API defined by Java EE and allows for executing applications.
Web component: is a part of a Web application (servlet, JSP, …) hosted and executed by the Web
container.

Jakarta EE: opensource version of Java EE under the Eclipse Foundation.

• Jakarta EE 8 is the same as Java EE 8, just renaming Java into Jakarta

• Jakarta EE 9, currently under development, will mainly target package name changes from
javax.* into jakarta.*

• Jakarta originally was an Apache Software Foundation sub-project, retired in 2011, aimed at
developing open source Java solutions, e.g. Maven, Tomcat, Lucene, …

Java EE: Multi-tiered Applications

Java Servlet: is a Java technology-based Web component, managed by a container, that generates
dynamic content.

• Servlets are platform-independent Java classes that are compiled to platform-neutral byte
code that can be loaded dynamically into and run by a Java technology-enabled Web server.

• A servlet container may send concurrent requests to a servlet. To handle the requests, the
developer must make adequate provisions for concurrent processing with multiple threads

• Servlets are not thread-safe.

• Servlets are part of JavaEE and they are contained in the javax.servlet and
javax.servlet.http packages.

11

Javax.servlet Main Classes

• Servlet: defines methods that all servlets must implement.

• ServletRequest: defines an object to provide client request information to a servlet.

• ServletResponse: Defines an object to assist a servlet in sending a response to the client.

• ServletConfig: a servlet configuration object used by a servlet container to pass
information to a servlet during initialization.

• ServletContext: defines a set of methods that a servlet uses to communicate with its
servlet container, for example, to get the MIME type of a file, dispatch requests, or write to
a log file.

Javax.servlet.http Main Classes

• HttpServlet: Provides an abstract class to be subclassed to create an HTTP servlet suitable
for a Web site. All your servlets will extend this calls.

• HttpServletRequest: extends the ServletRequest interface to provide request
information for HTTP servlets.

• HttpServletResponse: extends the ServletResponse interface to provide HTTP-
specific functionality in sending a response.

• Cookie: creates a cookie, a small amount of information sent by a servlet to a Web browser,
saved by the browser, and later sent back to the server

• HttpSession: provides a way to identify a user across more than one page request or visit
to a Web site and to store information about that user.

Servlet LifeCycle:

• init(ServletConfig): called by the servlet container to indicate to a servlet that the
servlet is being placed into service. The servlet container calls the init method exactly once
after instantiating the servlet. The init method must complete successfully before the
servlet can receive any requests.

o the ServletConfig object gives also access to a ServletContext object which
defines a servlet’s view of the Web application within which the servlet is running
and allows for servlet-container communication.

• service(ServletRequest, ServletResponse): called by the servlet container to
allow the servlet to respond to a request.

o Servlets typically run inside multithreaded servlet containers that can handle
multiple requests concurrently. Developers must be aware to synchronize access to
any shared resources such as files, network connections, and as well as the servlet’s
class and instance variables.

o In the case of an HttpServlet this method is specialized by methods for each HTTP
request

▪ doGet(HttpServletRequest, HttpServletResponse): called by the
server (via the service method) to allow a servlet to handle a GET request.

▪ doPost(HttpServletRequest, HttpServletResponse): called by
the server (via the service method) to allow a servlet to handle a POST
request.

▪ doPUT(HttpServletRequest, HttpServletResponse): called by the
server (via the service method) to allow a servlet to handle a PUT request.

12

▪ doDelete(HttpServletRequest, HttpServletResponse): called by
the server (via the service method) to allow a servlet to handle a DELETE
request.

• destroy(): called by the servlet container to indicate to a servlet that the servlet is being
taken out of service. This method is only called once all threads within the servlet’s service
method have exited or after a timeout period has passed. After the servlet container calls
this method, it will not call the service method again on this servlet. This method gives the
servlet an opportunity to clean up any resources that are being held (for example, memory,
file handles, threads) and make sure that any persistent state is synchronized with the
servlet’s current state in memory.

4.3. Apache Tomcat
Is an open source implementation of the Java Servlet.
Tomcat 10 implements Jakarta EE, so everything is in the jakarta.* package
Tomcat 9 implements Java EE, so everything is in the java.* package.
Don’t need installation. Just unzip.
Start tomcat: Go in bin folder, run startup shell.
Mvn clean package: to generate the war file
Select war file of the application to run.
Localhost:8080

Setup the Project Directory Structure

The web.xml Configuration File:

13

Configuration of the Maven Project

4.4. SQL Injection

SQL Injection (SQLI) is a code injection technique, used to attack data-driven applications, in which
nefarious SQL statements are inserted into an entry field for execution

SQL injection attacks allow attackers to spoof identity, tamper with existing data, cause repudiation
issues such as voiding transactions or changing balances, allow the complete disclosure of all data
on the system, destroy the data or make it otherwise unavailable, and become administrators of
the database server.

SQL injection is the first among the OWASP “The Ten Most Critical Web Application Security Risks”
in both 2013 and 2017

14

4.5. Examples

4.5.1. HelloWorld Servlet

The web.xml Configuration File:

15

Configuration of the Maven Project:

Project Object Model (POM):

You need to add the dependency on the servlet API.
However, the Web container (Tomcat) already has this API installed. Therefore, you set scope to
provided to indicate that the libraries are needed at compilation time on the local machine but they
will be available in the deployment environment and so you do not need to package them in the
war file.

16

4.5.2. Examples – Get and Post
Html file:

The value of the name attribute (helloName) will be used by the servlets to access the submitted
form parameter.

Servlets:

The web.xml Configuration File

17

Project Object Model (POM):
<packaging>war</packaging> Packaging is war to produce a file deployable on Tomcat

18

4.6. Java Servlets and Access to the Database

Overall architecture of a full-stack application

Employee Web Application Class Diagram:

Create Employee: Sequence Diagram:

Search Employee: Sequence Diagram

19

Database:

The Employee Class:

20

The Message Class:

The CreateEmployeeDatabase Class:

21

The SearchEmployeeBySalaryDatabase Class:

Pool of Database Connections via Tomcat: context.xml

22

The web.xml Configuration File

23

Project Object Model (POM)

The AbstractDatabaseServlet Class:

The CreateEmployeeServlet Class:

24

The SearchEmployeeBySalaryServlet Class

25

5. Java Server Pages (JSP)

5.1. JavaServer Pages

Creating HTML (CSS, JS) directly from servlets is a cumbersome process

• no support to code in HTML (CSS, JS) since they are just Java strings

• ease of errors

• difficult maintenance and upgrade of the code
JavaServer Pages (JSP) technology provides the means for textual specification of the creation of a
dynamic response to a request.
The technology builds on the following concepts:

• Template Data: a substantial portion of most dynamic content is fixed or template content.
Text or XML fragments are typical template data. JSP technology supports natural
manipulation of template data

• Addition of Dynamic Data: JSP technology provides a simple, yet powerful, way to add
dynamic data to template data

• Encapsulation of Functionality: JSP technology provides two related mechanisms for the
encapsulation of functionality: JavaBeans component architecture, and tag libraries
delivering custom actions, functions, listener classes, and validation.

Execution of a JSP Page: On first invocation, JSP pages are turned into the “corresponding servlet”
and compiled to a Java class. Subsequent invocation will directly refer to the compiled class. You
can ask the Web container to pre-compile JSP pages before use.

Components of a JSP page:

• template text: it is the static HTML (CSS, …) text

• directives: provide global information that is conceptually valid independent of any specific
request received by the JSP page

o <%@ page … %>: defines pages dependent attributes
o <%@ include … %>: includes a file
o <%@ taglib … %>: declares a tag library

• actions: perform a given operation. The use standard XML syntax <prefix:action>, e.g
<jsp:param>

26

o standard action: a set of base action defined in the JSP specification.
o custom action: personalized actions to support specific task and collected into tag

libraries. The JSTL (JSP Standard Tag Library) is one of such extensions, it is
standardized and supports all the typical needs of an applications (conditional
instructions, formatting, internationalization, …)

• scripting: it is raw Java code to add further flexibility (to be avoided as much as possible)
o <% … %> scriptlet: a fragment of Java code
o <%= … %> expression: embeds the results of a Java expression
o <%! … %> declaration: allows for declaring variables and methods which will be used

in the JSP page

• expression language (EL): is it a simple language to access data and variable made available
from the application.
${…}: it contains the expression to be evaluated and executed

JavaBean is a Java class, providing a reusable software component which follows a specific naming
conventions and can thus be manipulated in an applicative framework. For example, component of
a GUI framework.
JavaBean conventions:

• it must have a no-argument constructor, to facilitate its instantiation.

• its fields must be exposed through accessor methods which are called: getXXX and setXXX
for a generic field name XXX, and isXXX for a boolean field XXX

JSP relies on JavaBeans to exchange information among the different components of the
application.

27

EL variables ${…}

Example: pdf 06.
The web.xml Configuration File:

Project Object Model (POM):

28

5.2. Model-View-Controller

29

6. HTTP and REST

Basic Web Technology

• HyperText Markup Language (HTML): the markup language to write Web pages

• HyperText Transfer Protocol (HTTP): the application layer protocol which rules the
communication between Web clients and Web servers

• Multipurpose Internet Mail Extensions (MIME): the media type and the encoding of the
exchanged information

• Uniform Resource Locator (URL): the way to identify and locate resources on the Web.

6.1. URL

Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract
or physical resource.

• Uniform: it allows different types of resource identifiers to be used in the same context,
even when the mechanisms used to access those resources may differ

o uniform semantic interpretation of common syntactic conventions
o consistent introduction of new types of resource identifiers

• Resource: is used in a general sense for whatever might be identified, e.g. an electronic
document, an image

o a resource is not necessarily accessible via the Internet; e.g., human beings or books
in a library

o abstract concepts can be resources

• Identifier: embodies the information required to distinguish what is being identified from all
other things within its scope of identification.

URI are a generic and abstract identification mechanism
Uniform Resource Locator (URL) refer to the subset of URI that, in addition to identifying a resource,
provide a means of locating the resource by describing its primary access mechanism (e.g., its
network “location”). Example: https://www.rfc-editor.org/rfc/rfc1738.txt
Uniform Resource Name (URN) refer to the subset of using the “urn” scheme (see later on) and
with the properties of a “name”. the syntactical correctness of a name starting with “urn:” is not
sufficient to make it a URN. In order for the name to be a valid URN, the namespace identifier needs
to be registered in accordance with the well-defined rules and the remaining parts of the assigned-
name portion of the URN need to be generated in accordance with the rules for the registered URN
namespace. Example: urn:isbn:978-951-0-18435-6
Internationalized Resource Identifier (IRI) is an extension of the URI syntax to allow for Unicode
Characters. Example: https://en.wiktionary.org/wiki/Ῥόδος

URI Syntax

• scheme: a name that refers to a specification for assigning identifiers within that scheme;
examples include http(s), ftp, mailto, and file

• two slashes (//): required by some schemes and not required by some others

• an authority part, comprising:
o an optional authentication section of a user name and password, separated by a

colon, followed by an at symbol (@)

https://www/
https://en/

30

o a “host”, consisting of either a registered domain name or an IP address
o an optional port number, separated from the hostname by a colon

• a path, which contains data, usually organized in hierarchical form, that appears as a
sequence of segments separated by slashes

• an optional query, separated from the preceding part by a question mark (?), typically
consisting of a sequence of attribute=value pairs separated by a delimiter (&)

• an optional fragment, separated from the preceding part by a hash (#). The fragment
contains a fragment identifier providing direction to a secondary resource, such as a section
heading in an article identified by the remainder of the URI

• Percent-Encoding: an octet encoded as a character triplet, consisting of the percent
character “%” followed by the two hexadecimal digits representing that octet’s numeric
value. It is used for escaping both reserved characters and non-ASCII characters. E.g. %20 is
the percent-encoding for space, %3F for ?, %26 for &, %23 for #, %2F for /, %E0 for à

ASCII Character Encoding

• ASCII (American Standard Code for Information Interchange) is a character encoding scheme
introduced in 1963 by the American Standards Association

• It uses 7 bits to represents 128 characters — control characters, latin alphabet letters (lower
and upper cases), numbers, punctuation, some symbols.

• It has been then standardized by ISO in 1972. Since ASCII did not provide a number of
characters needed in languages other than English, a number of national variants were made
that substituted a few less-used characters with needed ones, leading to incompatibilities.

Extended ASCII:

• include also non-English symbols

• uses 8 bits to encode 256 characters.

• the first 128 characters are the same as in ASCII at 7 bits

• the additional (upper) 128 characters are used to define a set of alternative code tables, e.g.
for different European and non-European languages, leading to several compatibility issues

• Extended ASCII is standardized in the ISO 8859 sets of recommendations since 1987.

The Unicode Standard:

• In 1991 the Unicode Consortium (https://home.unicode.org/) developed a new standard to
address the compatibility issues among the different ASCII encodings and to develop a single
set of characters suitable for all the different alphabets and symbols

• The first versions of Unicode used 16 bits to represent 65,536 characters while the more
recent versions use 32 bits to represent up to 4,294,967,296 possible characters. The first
256 characters are in common with the ISO 8859-1 standard

• To save memory, alternative encoding schemes have developed for “packing” Unicode
symbols, called Unicode Transformation Format (UTF)

o UTF-8 is among the most adopted: it uses 8 bits for the characters which are in
common with extended ASCII, 16 bits for the new characters added by the first
Unicode versions, and 32 bits only when needed to represents the newest characters.

• It has been 30et30Attribut by ISO in 1993 as Universal Character Set (UCS)

https://home/

31

Example of Extended ASCII and Unicode

6.2. MIME

Multipurpose Internet Mail Extensions (MIME) is a standard supporting the encoding of
information for e-mail and the Web.

• MIME defines several media types — e.g. text, image, audio — and subtypes — e.g. plain,
html, xml for text.

• MIME media types are registered by IANA (Internet Assigned Numbers Authority)
https://www.iana.org/assignments/media-types/media-types.xhtml

• For each type and subtype it is possible to specify additional information, when needed, such
as the charset of a text type.

• MIME defines a set of headers which are used by protocols like SMTP for email and HTTP for
the Web to specify the media type, format and encoding of the exchanged content.

(Some) MIME Headers:

• MIME-Version: defines the version of MIME used. Example, MIME-Version: 1.0

• Content-Type: specifies the nature of the data in the body of an entity by giving media type
and subtype identifiers, and by providing auxiliary information that may be required for
certain media types. Example, Content-Type: text/plain; charset=ISO-8859-1

• Content-Transfer-Encoding: defines a set of methods for representing binary data in formats
other than ASCII text format. Some possible values are 7bit, 8bit, base64. Example

Content-Type: application/octet-stream

Content-Transfer-Encoding: base64

• Content-Disposition: defines how the content body has to be represented/displayed on the
client side. A body part should be marked “inline” if it is intended to be displayed
automatically upon display of the message; it can be designated “attachment” to indicate
that it is separate from the main body of the mail message, and that their display should not
be automatic, but contingent upon some further action of the user. Additional fields like,
filename, modification-date, size and so on are available to provide further Information.
Example

Content-Type: image/jpeg

Content-Disposition: attachment; filename=genome.jpeg;

modification-date=”Wed, 12 Feb 2020

16:29:51 -0500”; size=9028

https://www/

32

The multipart media type represents one or more different sets of data combined in a single
body. The body must then contain one or more body parts, each preceded by a boundary delimiter
line, and the last one followed by a closing boundary delimiter line.
The mixed subtype is intended for use when the body parts are independent and need to be
bundled in a particular order, e.g. content of an email and attachments.
The alternative subtype is syntactically identical to multipart/mixed but the semantics is
different. In particular, each of the body parts is an “alternative” version of the same information,
e.g. content of an email in plain text and html version.

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary=frontier

This is a message with multiple parts in MIME format.

--frontier

Content-Type: text/plain

This is the body of the message.

--frontier

Content-Type: application/octet-stream

Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+VghpcyBpcyB0aGUg

Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw+Cg==

--frontier–

Sending Web forms and Uploading Files

• The multipart/form-data media type allows for uploading files and sending fields from
Web forms. More effective encoding of (large) binary files, with the same mechanisms as
the multipart type in general, but too much header overhead to just send a few form
fields.

• The application/x-www-form-urlencoded media types allows for sending field from
Web forms.

o all the name=value pairs are concatenated into a single string, separated by &, and
the string is then percent-encoded. They can also be appended as a query part in a
URI, instead of being sent as content body

o not suitable for sending (large) binary files, due to huge encoding overhead, but
effective for a few form fields.

multipart/form-data Example. Application/x-www-form-urlencoded Example

33

6.3. HTTP 1.1

Hypertext Transfer Protocol (HTTP) is a textual request-response protocol where clients and
servers exchange messages constituted by an header and an optional body.

• is a stateless protocol, i.e. each request-response is independent and neither the client nor
the server has to keep trace of the exchanged messages. This simplifies the implementation
of the protocol and makes it more scalable.

• s designed to favour the use of intermediaries or proxies, typically for caching or security
purposes.

HTTP Request:

METHOD /path-to-resource HTTP/version-number

Header-Name-1: value

Header-Name-2: value

[optional request body]

• Request line:
o METHOD: one of the HTTP methods, e.g. GET or POST
o /path-to-resource: the path part of an URI, including query and fragment if

available
o HTTP/version-number: the version of HTTP used by the clients

• Headers: a set of headers, separated by the body of the request by a blank line, often called
<CR><LF>

• Body: an optional content to be sent to the server, followed by a blank line
GET /sj/index.html HTTP/1.1

Host: www.mywebsite.com

HTTP Response:

HTTP/version-number status-code message

Header-Name-1: value

Header-Name-2: value

[response body]

• Status line:
o HTTP/version-number: the version of HTTP used by the clients
o status-code: 3-digit integer result code of the attempt to understand and satisfy

the request.
o message: is intended to give a short textual description of the status code

• Headers: a set of headers, separated by the body of the request by a blank line

• Body: an optional content sent by the server, followed by a blank line

http://www.mywebsite/

34

HTTP Request Methods:

• GET: means retrieve whatever information is identified by the request URI

• POST: is used to request that the destination server accept the entity enclosed in the request
as a new subordinate of the resource identified by the request URI

• PUT: requests that the enclosed entity be stored under the supplied request URI. If the
request URI refers to an already existing resource, the enclosed entity should be considered
as a modified version of the one residing on the origin server. If the request URI does not
point to an existing resource, and that URI is capable of being defined as a new resource by
the requesting user agent, the origin server can create the resource with that URI

• DELETE: requests that the origin server deletes the resource identified by the request URI

• HEAD: is identical to GET except that the server must not return a message-body in the
response. The meta-information contained in the HTTP headers in response to a HEAD
request should be identical to the information sent in response to a GET request

• OPTIONS: represents a request for information about the communication options available
on the request/response chain identified by the Request-URI.

Properties of HTTP Methods:

• Safe methods: if their defined semantics is essentially read-only; i.e., the client does not
request, and does not expect, any state change on the origin server as a result of applying a
safe method to a target resource; in other words, they should not have side effects

o The purpose of distinguishing between safe and unsafe methods is to allow
automated retrieval processes (spiders) and cache performance optimization (pre-
fetching) to work without fear of causing harm.

o safe: GET, HEAD, OPTIONS; not safe: DELETE, POST, PUT

• Idempotent methods: if the intended effect on the server of multiple identical requests with
that method is the same as the effect for a single such request.

o Idempotent methods are distinguished because the request can be repeated
automatically if a communication failure occurs before the client is able to read the
server’s response.

o idempotent: GET, HEAD, OPTION (safe methods), DELETE, PUT; not idempotent:
POST

• Cacheable methods: indicate that responses to them are allowed to be stored for future
reuse; in general, safe methods are defined as cacheable.

35

HTTP Response Status Codes: The first digit of the Status-Code defines the class of response.

• 1xx: Informational – Request received, continuing process.
HTTP/1.1 101 Switching Protocols

• 2xx: Success – The action was successfully received, understood, and accepted.
HTTP/1.1 200 OK

• 3xx: Redirection – Further action must be taken in order to complete the request
HTTP/1.1 301 Moved Permanently

Location: http://www.dei.unipd.it/

• 4xx: Client Error – The request contains bad syntax or cannot be fulfilled.
HTTP/1.1 404 Not Found

• 5xx: Server Error – The server failed to fulfill an apparently valid request.
HTTP/1.1 500 Internal Server Error

(Some) HTTP Request Headers:

• Accept: specifies response media types that are acceptable
Accept: text/plain, text/plain, image/*

• Accept-Charset: indicates what charsets are acceptable in textual response content
Accept-Charset: iso-8859-5, UTF-8

• Accept-Encoding: indicates what response content-codings are acceptable in the response.
An “identity” token is used as a synonym for “no encoding” in order to communicate when
no encoding is preferred.
Accept-Encoding: compress, gzip

• Accept-Language: indicates the set of natural languages that are preferred in the response
Accept-Language: it, da, en-gb

for language codes see, e.g., ISO 639-1 (2002). Codes for the representation of names of
languages – Part 1: Alpha-2 code. Recommendation ISO 639-1:2002.

• Referer: allows the user agent to specify a URI reference for the resource from which the
target URI was obtained, i.e. the “referrer”, though the field name is misspelled. The
35et35Attr header field allows servers to generate backlinks to other resources for simple
analytics, logging, optimized caching, etc.
Referer: http://www.example.org/hypertext/Overview.html

• User-Agent: contains information about the user agent originating the request, which is
often used by servers to help identify the scope of reported interoperability problems, to
work around or tailor responses to avoid particular user agent limitations, and for analytics
regarding browser or operating system use
User-Agent: CERN-LineMode/2.15 libwww/2.17b3

(Some) HTTP Response Headers:

• Content-Type: indicates the MIME media type of the associated representation
Content-Type: text/html; charset=ISO-8859-4

• Content-Encoding: indicates what content codings have been applied to the representation,
typically compression
Content-Encoding: gzip

• Content-Language: describes the natural language(s) of the intended audience for the
representation
Content-Language: it, en

• Content-Length: provides the anticipated size, as a decimal number of octets, for a potential
payload body
Content-Length: 8092

• Allow: lists the set of methods advertised as supported by the target resource

http://www/
http://www/

36

Allow: GET, HEAD, PUT

• Server: contains information about the software used by the origin server to handle the
request, which is often used by clients to help identify the scope of reported interoperability
problems, to work around or tailor requests to avoid particular server limitations, and for
analytics regarding server or operating system use
Server: CERN/3.0 libwww/2.17

• Date: represents the date and time at which the message was originated
Date: Tue, 15 Nov 1994 08:12:31 GMT

• Last-Modified: provides a timestamp indicating the date and time at which the origin server
believes the selected representation was last modified
Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT

Authentication and Authorization:

• To access secured resources, the client has to send authentication information by using the
Authorization header, which supports various authentication mechanisms

• The simplest authentication mechanism is the Basic one where user name and password are

concatenated with a colon (and encoded base64
o example for a user with user name 36et36At and password ferro — the

authentication string 36et36At:ferro becomes
bmljb2xhOmZlcnJv in base64

GET /secured-resource/pippo.jpg

Authorization: Basic bmljb2xhOmZlcnJv

o not that with basic authentication, user credentials are just encoded but not
encrypted. So, this mechanism does not guarantee confidentiality, if not used
together with some other technique such as https

• If the client tries to access secured resources without providing authentication credentials
(or providing the wrong ones), the server replies with an authentication challenge returning
the status code 401 Unauthorized and setting the WWW-Authenticate header to specify the
expected authentication mechanism.

o example of authentication challenge
HTTP/1.1 401 Unauthorized

WWW-Authenticate: Basic realm=“Webapp”

o the realm allows the protected resources on a server to be partitioned into a set of
protection spaces, each with its own authentication scheme and/or authorization
database.

o Web browsers reply to an authentication challenge by showing a
username/password windows to enter user credentials. Authentication is required
only the first time a real is accessed because, after the first successful authentication,
Web browser automatically add the Authorization header to all subsequent
request under the same realm.

Session JDBC: filter class check if there is the authentication. ProtectedResourceFilter.

37

38

39

6.4. The REST architectural paradigm
REST is an architectural paradigm which applies the architectural principles of the Web to Web
services.
REST relies on a network of Web resources where users proceed in the application by following links
(state transitions) which provide the representation of the next resource (new state) to them.
Features: Simplicity, state-less, scalability

Resource :whatever has identity

• have a state which can change over time.

• have an identifier (URI) which is unique and global.

• can transfer a representation of their state.

Representation: upon request, a resource may transfer a representation of its state to a client
resources expose a uniform interface for their management.
Stateless: each request between client and server must contain all the information needed to
understand the request. Messages must be self-explaining.

HTTP is a stateless protocol

• provides an uniform interface to access resources, i.e. the HTTP methods which have a well
defined semantics: GET, POST, PUT, DELETE

• requests/response rely on headers/bodies which are self-explaining

40

REST: Example of Resources and URIs

• Each resource has a unique identifier, i.e. an URI, which has to be descriptive Enough.

• REST relies on URI templates to specify how resources are identified.
/student/{badge}/exam/{id}

REST and HTTP Request Methods

REST: Design Principles

• Identify all the resources which have to be exposed

• Create a URI for each resource, preferably using nouns and verbs

• Determine which HTTP request methods are needed for each resource

• Link resource and “unveil” information by following links

• Specify the format of representation of a resource, possibly using a schema

• Accurately document all the services

Documenting a REST API:

41

6.5. AJAX

Traditional (Web 1.0) Applications:

• the user interacts with the browser interface

• the interaction generates requests from the client to the server

• the server processes the requests and returns a new HTML pages

• the browser renders the page to the user
Web 2.0 Applications (AJAX):

• the user interacts with the browser interface

• one or more requests are sent (asynchronously) to the server to react to the user interaction

• the Web server processes the requests and returns XML/JSON/HTML

• the browser updates the corresponding part of the page with the information received back
from the server as it arrives

42

7. Markup Languages

7.1. Markup languages
The Markup is part of our writing system
The markup is not part of the text or content of the expression, but tells us something about it
The digital format allows us to develop markup technologies, beyond those of traditional writing
systems, geared towards the automatic processing of information.

Types of Markup:

• No markup: typical of ancient writing systems, e.g. scriptio continua or Boustrophedon.

• Punctuational: consists of the use of a closed set of marks to provide primarily syntactic
information about written utterances

• Presentational: deals with the actual laying out contents on a page. It includes horizontal
and vertical spacing, folios, page breaks, enumeration of lists and notes, and a host of ad hoc
symbols and devices

• Procedural: consists of commands indicating how text should be formatted

• Descriptive: defines the type or class of the content, e.g. to indicate its intended use

• Referential: refers to entities external to the document and is replaced by those entities
during processing

• Meta-markup: provides the means for controlling the interpretation of markup and for
extending the vocabulary of descriptive markup languages.

Standard Generalized Markup Language (SGML)
Features

• it is a descriptive and referential markup language

• it is a meta-markup language and the languages derived from SGML are called

• applications

• introduces the concept of document type and Document Type Definition (DTD), i.e. the
mechanism by which the tags and structure of derived languages are defined.

History

• it derives from GML (Generalized Markup Language) developed by Charles Goldfarb, Edward
Mosher e Raymond Lorie at IBM in 1974

• it becomes an ANSI (American National Standard Institute) standard in 1983

• it becomes and ISO (International Organization for Standardization) standard in 1986

43

7.2. HTML

HTML4:

• HTML is a markup language to create hypertextual Web pages

• It defines the structure/content and the presentation of a Web page

• It is an application of SGML

• is Procedural, descriptive, referential
Problems of HTML4:

• Loose code parsing: parsing heuristics for missing tags, swapped tags, … which cause
inconsistencies and incompatibilities among browsers

• Lack of separation between content and presentation
o difficulty to reuse content in different contexts (desktop, mobile) or for different

purposes
o abuse of the semantics of the tags just to obtain a presentation effect, e.g. <h1> or

<table>
o Cascading Style Sheets (CSS) have introduced to overcome these issues

• Lack of support for semantic description of content

• HTML 4.0 it is not a meta-markup language

HTML5: It is a re-design of the HTML4 language to clearly separate the structure/content from the
presentation of a Web page. Some new features:

• tighter integration with CSS (in charge of the presentation) and JavaScript (in charge of the
interaction)

• tags that describe parts of a document, e.g. navigation elements, articles, sections, headers,
and footers

• new form elements, e.g. several new versions of the <input> element, allowing users to pick
colors, numbers, e-mail addresses, and dates

• native support for audio and video streams

• improved graphics support with Scalable Vector Graphics (SVG) and/or canvas

• a new local storage mechanism, the Web Store, which improves over cookies

• is procedural, descriptive, referential

44

7.3. XML

eXtensible Markup Language (XML): It is a markup language for representing and exchanging
information, geared towards interoperability among distributed systems

• data and information represented in XML is considered semi-structured, i.e. inbetween the
rigid structured approach of databases and the unstructured approach of full text
documents

• It is an application of SGML

• It is a typed language, offering two alternatives to define document types: DTD (Document
Type Definition) borrowed from SGML or Xschema (XML schema) based on an XML syntax.

• XML is Descriptive, referential, meta-markup

XML document is a tree with different types of node.

Types of Node in XML

• Text: fragment of (unstructured) information represented in the XML document

• Element: contains others nodes and it is logical grouping of the information represented by
its descendants

• Attribute: associated to an element represents its additional properties

• Comment: a textual content ignored in the processing

• Processing instruction: meta-directive for the XML processor

• Root: the whole XML tree, implicit
Textual Representation of XML Nodes

• Text: represented exactly as the contained text

• Element: defined by opening and closing tags enclosed by angular brackets < >
o <elements> ... </elements>

o <empty-element></empty-element> or <empty-element/>

• Attribute: only in the opening tag of an elements and cannot be duplicated
attribute-name = “value”

• Comment: everywhere in the document (but not within other markup) enclosed by <!--... -
>. <!–comment →

45

• Processing instruction: enclosed by angular brackets and question marks, it defines the
application which has to process it, called target, and the information to pass to the
application. <?target value?>

• Root: implicit

Properties of an XML Document

• XML document must be well-formed
o opening and closing tags must match and be properly nested
o attribute values must be enclosed by quotes
o there must be a unique root node element

• If a document type is specified (with either DTD or XML schema) they may be valid, if the
document complies with the constraint expressed in the document type.

DOM (Document Object Model) is a model and an API independent from the platform and language
which allow us to process HTML and XML documents, creating an in-memory representation of
them

• The DOM API is expressed by using the Interface Definition Language (IDL), a generic syntax
to define object-oriented interfaces.

• A language can implement DOM by providing a binding from the abstract interface to a
concrete one in the language. Bindings towards many languages, among which JavaScript,
Java, PHP

• DOM is a set of W3C recommendations, being updated to better match with HTML5.

Approaches to parse XML:

• DOM (Document Object Model): is an API based on creating an in-memory representation
of the XML used also in browsers to parse, represent, and render HTML documents.

• SAX (Simple API for XML): is a push streaming API which notifies the applications of events
(start tag, end tag, …) by means of call-backs.

• StAX (Streaming API for XML): is a pull streaming API which returns events to the
applications when asked.

46

DOM: Main Interfaces

Document Type Definition (DTD):It is a way to express the structure (document type) of an XML
Document. Same mechanism used in SGML.

• It allows us to define element, attributes, and textual data

• It uses a syntax inspired by regular expressions
o <!ELEMENT name model>: defines an element with the given name and model
o <!ATTLIST element-name attribute-name type default>: defines an

attribute of an element
o <!DOCTYPE root SYSTEM “URI”>: declares which DTD to used in an XML

document and which elements is to be considered the root of the Document.
Example:

Limitations of DTD:

• Lacks a mechanism to support data types in elements and attributes

• Declaration of elements and attributes is independent from the context e.g., you cannot
define the value of an attributes on the basis of the values of another element.

• It does not use the XML syntax

• It does not support namespaces (see later on)

• It does not support auto-documentation

XML Namespace

• Programming languages address clashes in the names defined in different modules, classes,
etc. by using namespaces which fully qualify a name e.g. Java packages

• XML uses Uniform Resource Identifiers (URI) to uniquely identify a namespace.

• Since URIs are typically very long strings, it is possible to associate a prefix to a URI to be
used locally in a XML document in place of the full URI.

47

xmlns attribute:

• When using prefixes in XML, a namespace for the prefix must be defined

• The namespace can be defined by an xmlns attribute in the start tag of an element

• The syntax is xmlns:name_of_the_prefix=“URI”

• Namespaces can also be declared in the XML root element

• The namespace URI is not used by the parser to look up information, but only to give the
namespace a unique name (companies, however, often use the namespace as a pointer to
a web page containing information about the namespace)

• The default namespace for an element allows us from using prefixes in all the child elements,
the syntax is xmlns=“default_namespace_URI”

XML Schema: It is a way to express the structure (document type) of an XML document by using the
XML syntax.

• It allows us to define: simple and complex (data) types, elements with either a simple or a
complex type, attributes with simple type.

• An XML schema is linked to an XML document in its root element.

48

7.4. JSON
JSON (JavaScript Object Notation) is a lightweight data-interchange format.

• it is based on a subset of the JavaScript Programming Language and browsers automatically
parse JSON into JavaScript objects

• JSON is a text format that is completely language independent.

• JSON is built on two structures:
o an object, i.e. a collection of name/value pairs.
o an array, i.e. ordered list of values

JSON Schema is a JSON media type for defining the structure of JSON data
Is intended to define validation, documentation, hyperlink navigation, and interaction control of
JSON data.

Processing JSON in Java: is usually parsed using a pull streaming API, similar to StAX for XML

• Jackson Project: https://github.com/FasterXML/48et48Att

• Java API for JSON Processing Specification (JSON-P) under Java EE 8:
https://jcp.org/en/jsr/detail?id=374

https://github/
https://jcp/

49

8. HTML

8.1. Main Elements

Each web page should begin with a DOCTYPE declaration to tell a browser which version of HTML
the page is using.

Meta Elements

• The <meta> elements provide information about the document itself, they can be used to
provide all sorts of information.

• The <meta> element is an empty element so it does not have a closing tag.

• The meta elements are not displayed by the browser, but are machine parsable and are
usually placed within the head element.

• Typically used to specify character set, page description,

• keywords, author of the document, and viewport settings (the

• viewport is the user’s visible area of a web page, and it varies with

• the device)

• Metadata is used by browsers (to understand how to display the content), search engines
(by using the specified keywords), and other web services.

Document Structure:

8.1.1. Text
Semantic markup: are text elements that are not intended to affect the structure of your web pages,
but they do add extra information to the pages.

• Examples: <h1> indicates the most important heading at the beginning of the document,
 indicates where emphasis should be placed, and <blockquote> indicates that a block
of text is a quotation.

• Browsers often display the contents of these elements in a different way.

50

• They should not be used to change the way that the text looks; their purpose is to describe
the content of a web page more accurately. i.e., you should not use <h1> (or any other HTML
tag) because it “looks good” for your purpose. You should use it because the text contained
in the tag has the importance of a title. For the appearance of that text, we will use CSS.

Headings: HTML has six “levels” of headings: <h1> is used for main headings, <h2> is used for
subheadings, and so on

• Browsers display the contents of headings at different sizes. The contents of an <h1>

element is the largest, and the contents of an <h6> element is the smallest.

• Browsers also automatically add some white space (a margin) before and after a heading
(more about margins later in CSS)

• The CSS allows you to control the size of text, its color, and the fonts used.

• Search engines use headings to index the structure and content of your web pages, use them
with good reason if you want to be correctly retrieved.

• Use heading to make headings only, don’t use them to make the text big or bold.

Paragraphs: usually a block of text, and always starts on a new line (it is an example of block
element, more on this later).

• Defined by the <p> tag.

• Browsers automatically add a margin before and after a paragraph.

• With HTML, you cannot be sure, or known in advance, how your HTML will be displayed.
Large and small screens and resized windows will produce different results.

• In HTML you cannot change how the text (or other elements) are displayed by adding extra
spaces or extra lines in the HTML code: the browser will automatically remove any extra
spaces and lines when rendering the page. We will need to use CSS.

• A paragraph consists of one or more sentences that form a self-contained unit of discourse.
The start of a paragraph is indicated by a new line.

• Text is easier to understand when it is split up into units of text. For example, a book may
have chapters. Chapters can have subheadings. Under each heading there will be one or
more paragraphs.

• Paragraphs may contain text, images, and other inline elements, but they may not contain
headings, lists, sectioning elements, or any element that typically displays as a block by
default.

Bold and Italic: , <i>. They are old, try not use them. Use strong ang Emphasis.
Strong and Emphasis: ,

Line Breaks and Horizontal Rules:

• To add a line break inside the middle of a paragraph you can use the line break tag
.

• To create a break between themes — such as a change of topic in a book or a new scene in
a play — you can add a paragraph-level thematic break (horizontal rule) between sections
using the <hr /> tag.

• empty elements: do not have any words between an opening and closing tag.

• An empty element usually has only one tag: before the closing angled bracket of an empty
element there will often be a space and a forward slash character.

More Text Elements:

51

8.1.2. Lists
Type of Lists:

• Ordered lists: are lists in which the sequence of the items is important, each item in the list
is numbered;

• Unordered lists: collections of items that appear in no particular order, begin with a bullet
point, rather than characters that indicate order;

• Description lists: lists that consist of name and value pairs, including but not limited to terms
and definitions.

All list elements (the lists themselves and its items) are displayed as block elements by default, which
means that they start on a new line and have some space above and below.

Ordered List: created with the element.
Each item in the list is placed between an opening (list item) tag and a closing tag.
The CSS list-style-type property can be used to change the bullets and numbers for lists.

Unordered list: is created with the element.
Each item in the list is placed between an opening (list item) tag and a closing tag.
The CSS list-style-type property can be used to change the the type of bullet points (circles, squares,
diamonds and so on).

Description list is created with the <dl> element. Inside the <dl>
element you will usually see pairs of <dt> and <dd> elements.

• <dt> is used to contain the definition term.

• <dd> is used to contain the actual definition.

Nested Lists: You can put a second list inside an element to create a sub-list or nested list.

52

8.1.3. Links
Anchor Syntax: Links are the defining feature of the web because they allow you to move from one
web page to another, enabling the very idea of browsing or surfing.

• Links are created using the anchor element: <a>

• Users can click on anything between the opening <a> tag and the closing tag. You
specify which page you want to link to using the href attribute.

Link Text: Is the text between the opening <a> tag and closing tag.

• Where possible, your link text should explain where visitors will be taken if they click on it
(rather than just saying “click here”).

• Nearly all graphical browsers display linked text as blue and underlined by default. Visited
links are generally displayed in purple.

• If you choose to change your link colors, keep them consistent throughout your site so as
not to confuse your users.

• In HTML5, you can put any element in an <a> element, even block elements.

The href Attribute (hypertext reference) provides the address of the page or resource (its URL) to
the browser.

• The URL can point to other HTML documents or to other web resources, such as images,
audio, and video files.

• There are two ways to specify the URL:
o Absolute URLs provide the full URL for the document, including the protocol

(http://), the domain name, and the pathname as necessary. Absolute URLs are used
when pointing to a document on the Web (i.e., not on your own server);

o Relative URLs describe the pathname to a file relative to the current document.
Relative URLs can be used when you are linking to another document on your own
site (i.e., on the same server).

Email and Telephone Links:
• href=”mailto:jon@example.org”

• href=”tel:+18005551212”

Opening Links in a New Window: target=”_blank”

Linking to a Page Fragment: Useful to provide shortcuts to information at the bottom of a long,
scrolling page or for getting back to the top of a page with just one click or tap.
Two part process:

• Identifying the destination: use the id attribute (can be used on every HTML element), the
value of the id attribute should start with a letter or an underscore (not a number or any
other character) and it is has to be unique: it has to appear only once in the document;

• Linking to the destination: use the <a> element, but the value of the href attribute starts
with the # symbol, followed by the value of the id attribute of the element you want to link

to.
<h1 id=”top”>Film-Making Terms</h1>

…

<p>Top</p>

Linking to a Fragment in Another Page:

53

8.1.4. Images

Adding Images:

• src: (source) tells the browser where it can find the image file. This will usually be a relative
URL pointing to an image on your own site.

• alt: (alternate text) provides a text description of the image which describes the image if
you cannot see it.

• title: provides additional information about the image. Most browsers will display the
content of this attribute in a tootip when the user hovers over the image.

• height: this specifies the height of the image in pixels;

• width: this specifies the width of the image in pixels.

Block and Inline Elements: Browsers show HTML elements in one of two ways:

• Block elements always appear on a new line. Examples of block elements: <h1>, <p>, ,
.

• Inline elements sit within a block level element and do not start on a new line. Examples of
inline elements: <a>, , and elements.

Placing Images: is an inline element, when the browser window is resized, the line of images
reflows to fill the new width.

• Where an image is placed in the code will affect how it is displayed: Before a paragraph,
Inside the start of a paragraph, In the middle of a paragraph

• New websites should use CSS to control the alignment of images (instead of the align
attribute).

Figure and Figure Caption: <figure> and <figcaption>

• You can have more than one image inside the <figure> element as long as they all share
the same caption.

• Before these elements were created there was no way to associate an element with
its caption.

8.1.5. Tables
Basic Table Structure

• <table> element is used to create a table.

• <tr> (table row) tag indicates the start of each row, and </tr> indicates the end of the row.

• Each cell of a table is represented using <td> and </td> tags (table data).

• <th> (table header) element is used just like the <td> element but its purpose is to represent
the heading for either a column or a row.

• The scope attribute on the <th> element indicates whether it is a heading for a column
(value equals to col) or a row (value equals to row).

54

8.1.6. Forms

Form Controls:

• Adding Text: Text input (single line), Password input, Text area

• Making Choices: Radio buttons, Checkboxes, Drop-down boxes

• Submitting Forms: Submitting Buttons, Image Buttons

• Uploading File: File upload

The <form> element carries:

• action (mandatory): its value is the URL for the page on the server that will receive the
information in the form when it is submitted.

• method: forms can be sent using GET or POST (default: GET).

• id: its value is used to identify the form distinctly from other elements on the page.

Text Input: <input>

• The value of the type attribute determines what kind of input they will be creating:
o type=“text”: creates a single-line text input.
o type=“password”: creates a text box that acts just like a single-line text input, except

the characters are blocked out.

• name: the value of this attribute identifies the form control and is sent along with the
information they enter to the server (to differentiate between various pieces of inputted
data, information is sent from the browser to the server using name/value pairs).

• maxlength: limits the number of characters a user may enter into the text field.

55

Difference Between Id and Name Attributes
Id Attribute:

• Every HTML element can carry the id attribute.

• The id value must be unique.

• It is used to uniquely identify that element from other elements on the page.

• Useful with CSS and javascript.
Name Attribute:

• The name attribute provides the variable name for the control.

• The name value do not need to be unique.

• When a user enters a comment in a control field, it would be passed to the server as a
name/value pair.

• All form control elements must include a name attribute (except submit) so the form-
processing application can sort the information.

• The web application that processes the data is programmed to look for specific variable
names.

Text Area: <textarea>

• used to create a mutli-line text input.

• Unlike other input elements this is not an empty element. Any text that appears between
the opening <textarea> and closing </textarea> tags will appear in the text box when the
page loads, if the user does not delete it, this message will be sent to the server along with
whatever the user has typed.

Radio Buttons and Checkboxes, Use the <input> element with:

• type=“radio”: radio buttons allow users to pick just one of a number of options.

• type=“checkbox”: checkboxes allow users to select (and unselect) one or more options in
answer to a question.

• name: the value of the name attribute should be the same for all of the radio buttons or
checkboxes used to answer a question.

• value: the value sent to the server for the selected option, the value of each of the buttons
in a group should be different.

• checked: the checked attribute can be used to indicate which value (if any) should be
selected when the page loads. The value of this attribute is checked.

Drop Down List

• The <select> element is used to create a drop down list box (select box).

• It contains two or more <option> elements.

• The words between the opening <option> and closing </ option> tags will be shown to the
user in the drop down box.

• The <option> element uses the value attribute to indicate the value that is sent to the
server along with the name.

• The selected attribute can be used to indicate the option that should be selected when
the page loads, otherwise the first option will be shown.

<form action=”http://www.example.com/profile.jsp”>

 <p>What device do you listen to music on?</p>

 <select name=”devices”>

 <option value=”ipod”>iPod</option>

 <option value=”radio”>Radio</option>

56

 <option value=”computer”>Computer</option>

 </select>

</form>

File Input Box and Submit Button: <input> element with

• type=“file”: allows users to upload files. It creates a box that looks like a text input
followed by a browse button, that allows the user to select a file from their computer to be
uploaded.

• type=“submit”: creates a submit button. The value attribute is used to control the text
that appears on a button.

• type=“image”: uses an image for the submit button.
<form action=”http://www.example.com/upload.jsp” method=”post”>

 <p>Upload your song in MP3 format:</p>

 <input type=”file” name=”user-song” />

 <input type=”submit” value=”Upload” />

</form>

HTML5 <input>: supports form validation, the browser can give users messages if the form control
has not been filled in correctly. Traditionally, form validation has been performed using JavaScript.
Introduces new elements:

• type=“date”: date input control

• type=“range”: slider input
• type=“email”

• type=“url”

• type=“search”

• type=“color”: color selector

DataList <datalist> element allows the author to provide a drop-down menu of suggested values
for any type of text input.
It gives the user some shortcuts to select from, but if none are selected, the user can still type in her
own text.
The list attribute in the input element to associate it with the id of its respective datalist.

Comments: <!–comment goes here →

Class Attribute class=”…”: identifies several elements as being different from the other elements
on the page, its value should describe the class it belongs to. The class attribute on any element can
share the same value.

Groups in a Block and Inline

• The <div> element allows you to group a set of elements together in one block-level box.

• The element acts like an inline equivalent of the <div> element.

• Using an id or class attribute on the <div> or elements means that you can create
CSS style rules to change the appearance of all the elements contained within them.

57

8.2. HTML5 New Elements
article, aside, audio, bdi, canvas, command, datalist, details, embed,

figcaption, Figure, footer, header, hgroup, keygen, mark, meter, nav,

output, progress, rp, rt, ruby, section, source, summary, time, track,

video, wbr

Page Layout

• HTML 4: web page authors used <div> elements to group together related elements on the
page (such as the elements that form a header, an article, footer or sidebar), and used class
or id attributes to indicate the role of the <div> element in the structure of the page.

• HTML5: introduces a new set of elements that allow you to divide up the parts of a page.
The names of these elements indicate the kind of content you will find in them.

Headers and Footers

• The <header> and <footer> elements can be used for:
o The main header or footer that appears at the top or bottom of every page on the

site.
o A header or footer for an individual <article> or <section> within the page.

• The <nav> element is used to contain the major navigational blocks on the site such as the
primary site navigation.

Article, Section, and Aside

• The <article> element acts as a container for any section of a page that could stand alone
(a blog entry, a comment or forum post).

• The <section> element groups related content together, and typically each section would
have its own heading. It may contain several distinct <article> elements that have a
common theme or purpose.

• The <aside> element has two purposes:
o When used inside an <article> element, it should contain information that is

related to the article but not essential to its overall meaning.
o When used outside of an <article> element, it acts as a container for content that

is related to the entire page.

58

Linking Block Elements: HTML5 allows web page authors to place an <a> element around a block
level element that contains child elements. This allows you to turn an entire block into a link.

HTML 5 API: HTML5 introduces many APIs (Application Programming Interfaces) for the creation of
web applications. APIs standardize tasks that traditionally required proprietary plug-ins or custom
programming. The following APIs are part of the W3C HTML5 specification:

• Media API, for playback of video and audio files;

• Session History API, for exposing the browser history;

• Offline Web Applications API, which allows web resources to be used while offline;

• Editing API, to create in-browser text editors;

• Drag and Drop API;

• Canvas API, for two dimensional drawing;

• Web Storage API, allows data to be stored in the browser’s cache;

• Geolocation API, lets users share longitude and latitude information;

• Web Workers API, that allows scripts to run in the background;

• Web Sockets API, that maintains an open connection between the client and the server.

Video

• The <video> element embeds a video file in the web page.

• The video resource can be provided with the src attribute or by one or more <source>

elements inside the video element to provide several video format options.

• There is still debate regarding the supported video formats for the video element. No file
format is supported by all browsers.

• width and height (pixel measurement): size of the box the embedded media player takes up
on the screen.

• poster: provides the location (url) of a still image to use in place of the video before it plays.

• controls: prompts the browser to display its built-in media controls, (play/pause button,
“seeker”, volume).

• autoplay: makes the video start playing automatically once it has downloaded enough of
the media file (to be avoided).

<video src=”highlight_reel.mp4” width=”640” height=”480”

poster=”highlight_still.jpg” controls autoplay> </video>

Audio

• The <audio> element uses the same attributes as the video element, with the exception of
width, height, and poster (because there is nothing to display!).

• preload: suggests the browser whether the audio data should be fetched or not:
o preload=“auto”: the video should be fetched as soon as the page loads.
o preload=“none”: wait until the user presses the play button and then fetch the

video.
o preload=“metadata”: loads information about the media file, but not the media

itself.
<audio id=”soundtrack” controls preload=”auto”>

<source src=”soundtrack.mp3” type=”audio/mp3”>

<source src=”soundtrack.ogg” type=”audio/ogg”>

<source src=”soundtrack.webm” type=”audio/webm”>

</audio>

59

Canvas

• The <canvas> element creates an area on a web page that you can draw on using a set of
JavaScript functions for creating lines, shapes, fills, text, animations, and so on.

• Everything on the canvas is generated with scripting, that means it is dynamic and can draw
things on the fly and respond to user input.

• You add a canvas space to the page with the canvas element and specify the dimensions
with the width and height attributes.
<canvas width=”600” height=”400” id=”my_first_canvas”>Your browser

does not support HTML5 canvas. Try using Chrome, Firefox, Safari or

Internet Explorer 9. </canvas>

60

9. CSS

9.1. Introduction to CSS
Cascading Style Sheets (CSS) is the W3C standard for defining the presentation
of documents written in HTML. Presentation, refers to the way the document is displayed or
delivered to the user.
CSS allows you to create rules that specify how the content of an element should appear.
CSS treats each HTML element as if it appears in a box.

The Benefits of CSS:

• Precise type and layout controls. You can achieve printlike precision using CSS.

• Less work. You can change the appearance of an entire site by editing one style sheet.

• Reliable browser support. Every browser in current use supports CSS.

CSS History

• CSS was first proposed by Håkon Wium Lie on October 10, 1994. At the time, Lie was working
with Tim Berners-Lee at CERN.

• The CSS 1 specification was completed in 1996. Browser CSS support was typically
incomplete and had many bugs that prevented CSS from being usefully adopted.

• CSS level 2 specification was developed by the W3C and published as a recommendation in
May 1998.

• The earliest CSS 3 drafts were published in June 1999.

Attaching the Style to the HTML Document:

• External style sheets is a separate, text-only document that contains a number of style rules.
It must be named with the .css suffix. The .css document is then linked to or imported into
one or more HTML documents.
<link href=”css/styles.css” type=“text/css” rel=”stylesheet” />

• Embedded style sheets is placed in a document using the style element, and its rules apply
only to that document. The style element must be placed in the head of the document.
<style type=”text/css”>…..</style>

• Inline styles, to apply properties and values to a single element using the style attribute in
the element itself.
<h1 style=”color: red; margin-top:2em”>Introduction</h1>

Multiple Style Sheets:

• Your HTML page can link to one style sheet and that stylesheet can use the @import rule to
import other style sheets.
@import url(“tables.css”);

• In the HTML you can use a separate <link> element for each style sheet.

A style sheet is made up of one or more style instructions, called rules or rule sets.
They describe how an element or group of elements should be displayed.
Each rule selects an element and declares how it should look.

CSS works by associating rules with HTML elements.
A CSS rule contains two parts: a selector and a declaration:

61

• Selectors indicate which element the rule applies to.

• Declarations indicate how the elements referred to in the selector should be styled.
Declarations are split into two parts (a property and a value), and are separated by a colon.
There can be more than one declaration in a single rule.

Selector {property1:value1; …}

CSS Selectors Types:

Pseudo Class Selector

• The browser keeps track of:
o Whether a link was already clicked (the color changes);
o Whether the cursor is over an element (hover state);
o Whether a form element has been checked or disabled;
o …

• Pseudo-class selectors are used to apply styles to elements in these states.

• Pseudo-class selectors are indicated by the colon (character. They typically go
immediately after an element name, for example: li:first-child.

Link Pseudo-Classes

• :link, applies a style to unclicked (unvisited) links

• :visited, applies a style to links that have already been clicked
a:link { color: maroon; }

User Action Pseudo-Classes:

• :focus, applies when the element is selected and ready for input;

• :hover, applies when the mouse pointer is over the element;

• :active, applies when the element (such a link or button) is in the process of being clicked
or tapped.

62

Group Selectors: h1, h2, p, em, img {…}

How CSS Rules Cascade

• If there are two or more rules that apply to the same element, it is important to understand
which will take precedence.

• Specificity: if one selector is more specific than the others, the more specific rule will take
precedence over more general ones.

• Last rule: if the two selectors are identical, the latter of the two will take precedence.

• You can add !important after any property value to indicate that it should be considered
more important than other rules that apply to the same element.

Inheritance:

• You can force a lot of properties to inherit values from their parent elements by using
inherit for the value of the properties.

Style Sheet Hierarchy: Style information can come from various sources, listed here from general
to specific. Items lower in the list will override items above them:

• Browser default settings

• User style settings (set in a browser as a “reader style sheet”)

• Linked external style sheet (added with the link element)

• Imported style sheets (added with the @import function)

• Embedded style sheets (added with the style element)

• Inline style information (added with the style attribute in an opening tag)

• Any style rule marked !important by the author

• Any style rule marked !important by the reader (user)

9.2. Color Property

Foreground Color: color
RGB Values, HEX Codes, Color Names, HSLA

Background Color: background-color
Default is transparent.

RGB: rgb(red, green, blue)

Contrast: Text is harder to read when there is low contrast between background and foreground
colors

CSS3 Opacity: opacity: 0.5;

• The value is a number between 0.0 and 1.0.

• rgba(0,0,0,0.5): rgb + opacity

HEX: #rrggbb

• values vary between 00 and ff (same as decimal 0-255)

HSL Colors: hsl(0,0%,78%)

63

• Hue represents the color, is often represented as a color circle where the angle represents
the color.

• Saturation is the amount of gray in a color, is represented as a percentage.

• Lightness is the amount of white (lightness) or black (darkness) in a color, is represented as
a percentage.

HSLA: HLS + opacity

9.3. The box Model

Every element in a document generates a box to which different properties can be applied:

• Control the dimensions of your boxes

• Create borders around boxes

• Set margins and padding for boxes

• Show and hide boxes

The Box Components

• Content area: the core of the element box

• Inner edge: the edges of the content area. In real pages, the edge of the content area would
be invisible.

• Padding: the padding is the area held between the content area and an optional border.
Padding is optional.

• Border: is a line (or stylized line) that surrounds the element and its padding. Borders are
also optional.

• Margin: is an optional amount of space added on the outside of the border.
Margins are always transparent, allowing the background of the parent element to show
through.

• Outer edge: the outside edges of the margin area. This is the total area the element takes
up on the page, and it includes the width of the content area plus the total amount of
padding, border, and margins applied to the element.

Sizing the Content Box: width, height properties

• Pixels: they allow designers to accurately control the box size.

64

• Percentages: the size of the box is relative to the size of the browser window or, if the box
is encased within another box, it is a percentage of the size of the containing box.

• Em: the size of the box is based on the size of text within it.

Specifying Height

• It is less common to specify the height of elements, since it is better to keep the height
calculated automatically allowing the element box to change based on the font size, user
settings, or other factors.

• If you do specify a height for an element containing text, be sure to also consider what
happens should the content not fit with the overflow property.

• Values of the overflow property:
o visible (default) allows the content to hang out over the element box so that it all

can be seen.
o hidden: the content that does not fit does not appear beyond the edges of the

element’s content area.
o scroll: when scroll is specified, scrollbars are added to the element box to let users

scroll through the content. Be aware that when you set the value to scroll, the
scrollbars will always be there, even if the content fits in the specified height just fine.

o auto: allows the browser to decide how to handle overflow. In most cases, scrollbars
are added only when the content doesn’t fit and they are needed.

Padding: allows you to specify how much space should appear between the content of an element
and its border. Is not inherited by child elements.

• padding-top

• padding-right

• padding-bottom

• padding-left

• padding: 10px 5px 3px 1px;

Borders: According to the CSS specification, if there is no border style specified, the border does not
exist. In other words, you must always declare the style of the border, or the other border properties
will be ignored.

• border-width (thickness)
• border-style

• border-color

• border (shorthand)

border-width property is used to control the width of a border. The value of this property can
either be given in pixels or using one of the following values:

• thin

• medium

• thick
You can control the individual size of borders using four separate properties:

• border-top-width

• border-right-width

• border-bottom-width

• border-left-width

65

You can also specify different widths for the four border values in one property (clockwise order:
top, right, bottom, left.): border-width: 2px 1px 1px 2px;

border-style

• solid: a single solid line

• dotted: a series of square dots

• dashed: a series of short lines

• double: two solid lines

• groove: appears to be carved into the page

• ridge: appears to stick out from the page

• inset: appears embedded into the page

• outset: looks like it is coming out of the screen

• hidden / none: no border is shown
individually change the styles of different borders using: border-topstyle, border-left-
style, border-right-style, border-bottomstyle

border-color

• border-top-color

• border-right-color

• border-bottom-color

• border-left-color

• clockwise order: top, right, bottom, left

border: style, width, and color values in one declaration

Circular borders: border-radius: 5px 20px 40px 60px;
Elliptical borders: (horizontal radius and vertical radius): border-top-right-radius: 100px 50px;

Other CSS 3 Borders Properties
border-image: the border-image property applies an image to the border of any box. It takes a
background image and slices it into nine pieces. This property requires three pieces of information:

• The URL of the image;

• Where to slice the image;

• What to do with the straight edges: (stretch, repeat, round).
Box-shadow: the box-shadow property allows you to add a drop shadow around a box. It must
use at least the first of these two values as well as a color:

• Horizontal offset: negative values position the shadow to the left of the box.

• Vertical offset: negative values position the shadow to the top of the box.

• Blur distance: if omitted, the shadow is a solid line like a border.

• Spread of shadow: if used, a positive value will cause the shadow to expand in all

• directions, and a negative value will make it contract.

Margin: is an optional amount of space that you can add on the outside of the border. Margins keep
elements from bumping into one another.
The value of the margin property is not inherited by child elements.

Display property defines the type of element box an element generates in the layout.

66

In addition to the familiar inline and block display roles, you can also make elements display as list
items or the various parts of a table.

• none, which removes the content from the normal flow entirely

9.4. Floating and Positioning
Normal Flow

• Text elements are laid out from top to bottom in the order in which they appear in the
source, and from left to right.

• Block elements stack up on top of one another and fill the available width of the browser
window or other containing element.

• Inline elements and text characters line up next to one another to fill the block elements.

• When the window or containing element is resized, the block elements expand or contract
to the new width, and the inline content reflows to fit.

• The normal flow is the default way in which browsers treat HTML elements, thus there is no
need of a CSS property to indicate that elements should appear in normal flow.

• Anyway, the syntax would be: position: static;

Relative positioning moves an element in relation to where it would have

• been in normal flow: shifting it to the top, right, bottom, or left of where it would have been
placed.

• This does not affect the position of surrounding elements; they stay in the position they
would be in in normal flow.

• The space it would have occupied is preserved and continues to influence the layout of
surrounding content.

• The element can potentially overlap other elements.
B {

 position: relative;

 top: 30px;

 left: 60px;

 background-color: fuchsia;

}

Absolute positioning places the element in relation to its containing element. It is taken out of
normal flow, meaning that it does not affect the position of any surrounding elements (as they
simply ignore the space it would have taken up). The element is positioned relative to its nearest
containing block.

B {

 position: absolute;

 top: 30px;

 left: 60px;

67

 background-color: fuchsia;

}

Fixed Positioning: is a form of absolute positioning that positions the element in relation to the
browser window (viewport), as opposed to the containing element.
Elements with fixed positioning do not affect the position of surrounding elements.
Fixed elements are often used for menus that stay in the same place at the top, bottom, or side of
a screen so they are always available, even when the content scrolls.

Position: fixed;

Floating: The float property moves an element as far as possible to the left or right, allowing the
following content to wrap around it.
Floats are one of the primary tools of modern CSS based web design, used to create multicolumn
layouts, navigation toolbars, and table-like alignment without tables.

Img { float: right; }

Key Behaviors of Floating Elements

• A floated element is like an island in a stream: they are not in the flow, but the stream has
to flow around them. This behavior is unique to floated elements.

• Floats stay in the content area of the containing element: it is also important to note that
the floated element is placed within the content area (the inner edges) of the element that
contains it. It does not extend into the padding area.

• Margins are maintained: in addition, margins are held on all sides of the floated element. In
other words, the entire element box, from outer edge to outer edge, is floated.

Floating Block Elements

• You must provide a width for floated block elements: If you do not provide a width value,
the width of the floated block will be set to auto, which fills the available width of the
browser window or other containing element.

• Elements do not float higher than their reference in the source: a floated block will float to
the left or right relative to where it occurs in the source, allowing the following elements in
the flow to wrap around it. It will stay below any block elements that precede it in the flow
(in effect, it is “blocked” by them).

Side by Side Element: The float property is commonly used to place boxes next to each other.

Clearing Floated Elements: Applying the clear property to an element prevents it from appearing
next to a floated element and forces it to start against the next available “clear” space below the
float.

• left: the left-hand side of the box should not touch any other elements appearing in the
same containing element.

• right: the right-hand side of the box will not touch elements appearing in the same
containing element.

• both: neither the left nor right-hand sides of the box will touch elements appearing in the
same containing element.

• none: elements can touch either side.
.clear { clear: left;}

Parent of Floated Elements: If a containing element only contains floated elements, some browsers
will treat it as if it is zero pixels tall. The CSS solution adds two CSS rules to the containing element:

68

• The overflow property is given a value auto.

• The width property is set to 100%.

Fixed width layout designs do not change size as the user increases or decreases the size of their
browser window. Measurements tend to be given in pixels.

• Advantages: Pixel values are accurate at controlling size and positioning of elements. Great
control over the appearance and position of items.

• Disadvantages: If the user’s screen is a much higher resolution than the designer’s screen,
the page can look smaller and text can be harder to read. You can end up with big gaps
around the edge of a page.

Liquid layout designs stretch and contract as the user increases or decreases the size of their
browser window. They tend to use percentages.

• Advantages: Pages expand to fill the entire browser window so there are no spaces around
the page on a large screen. If the user has a small window, the page can contract to fit it. The
design is tolerant of users setting.

• Disadvantages: If you do not control the width of sections of the page then the design can
look very different than you intended. If the user has a wide window, lines of text can
become very long. If the user has a very narrow window, you can end up with few words on
each line.

9.5. Responsive Web Design

History of Web Design

• Up until the last few years, websites were designed so they would t well on the most
common sizes of desktop and laptop screens.

• Early 2000s, ideas of fluid design and liquid layout: these techniques used percentage-based
widths to allow a web page’s design to flow to fit the width of the screen, so it could take
advantage of the available space on wider screens.

• When mobile phones with Internet access first became available the easiest solution was to
simply make separate mobile websites with a fixed page width that would fit on small screen.

• As more and more device sizes arrived on the market, it was no longer sustainable to create
separate websites for every possible screen size.

Introduction of Media Queries

• Without having to create separate sites, how can a website be displayed with different
layouts both on narrow and wide screens? Media queries.

• The CSS @media rule allows you to display different CSS styles based on device qualities
without affecting the HTML.

• CSS3 proposed a detailed specification for media queries which includes precise queries
based on media (device) features, such as width, height, and color capability.

• Media queries can rearrange your layout, but responsive design wouldn’t work without a
flexibility: this means that every horizontal measurement on your site needs to be in flexible
units (ems or percentage) rather than inflexible pixels.

Why Responsive Design?

69

• Getting the right design on every device, you don’t run the risk that users will be viewing the
mobile version of a site on their desktop monitors, or vice versa.

• Less work, you only have to create one website, one design, one set of code, and one set of
content.

• Optimized for search, a separate mobile site, with a separate set of URLs, can create issues
with your site’s placement in search results.

Viewport

• The viewport meta element is the key to making a responsive site work.

• Viewport: area on the computer or device screen where you are viewing a web page.

• Desktop viewport: browser window without the menus, toolbars, scrollbar, and everything
else that’s part of the browser itself.

• Mobile viewport: the viewport width is the same as the screen width.

• The viewport is different from the screen size.
<meta name=”viewport” content=”width=devicewidth, initial-scale=1”>

• width attribute tells the browser how to scale the web page, for a responsive site, the value
width=device-width tells the browser to render the page at full size, whatever the size
may be.

• The initial-scale attribute tells the browser how to scale the web page when it’s first
loaded on the screen (the zoom factor).

• Using the value initial-scale=1 means that the page will be rendered at the size
determined by the width attribute, and will not be zoomed in or out.

Media Queries: allow you to apply different style declarations based on qualities of the device the
website is being viewed on, most commonly the width of the viewport. Sort of if/then statement.
@media not|only mediatype and (mediafeature and|or|not mediafeature) {

 CSS code;

}

Following the @media are one or more expressions:

• only: cause those older browsers to ignore the whole query.

• screen: is the media type.

• (min-width: 40em): media feature expression.

• curly braces surround all the CSS that will be applied if the entire media query is true.

There are three possibility to use media queries:

• Writing media queries inside the stylesheets

• Tell the browser that the entire stylesheet should only be applied if a media query is true,
and ignored if the media query is not true.

• Include a media query as an attribute to the <style> element in the <head> of a page.

Media Features

• Viewport width and height (width, height);

• Screen width and height (device-width, device-height);

• Orientation, landscape or portrait (orientation);

• Ratio of the viewport (aspect-ratio);

• Ratio of the device screen (device-aspect-ratio);

• Resolution of the device screen (resolution).

70

Breakpoint: is the point at which you use a media query to change the design. It breaks your design
into two (or more) variations.

• A design range is the range of screen sizes. Each design range gets a different variation of
the design.

• The design needs to look good at any width, not just at certain points.

Designing Responsively

• Progressive enhancement is the idea that you start with the basics, and add on from there
for browsers and devices that can handle more.

• Designing with grids: the design is made up of multiple columns of equal widths, with equal
gutters (margins) between them, and everything on the page is based around those columns.

• Design for small screen first, it is much easier to create a layout and then make it bigger than
it is to make a layout smaller.

71

10. Javascript

10.1. Introduction to JavaScript

JavaScript is the programming language of the Web, it adds interactivity and custom behaviors to a
Web page.
JavaScript is a high-level, dynamically typed, interpreted programming language that is well-suited
to object-oriented and functional programming styles.
It is traditionally a client-side scripting language, which means it runs on the user’s machine and not
on the server.
Nowadays JavaScript is more and more also a server side language (Node.js).

How JavaScript make pages more interactive:

• Access the content: select any element, attribute or text from an HTML page;

• Modify content: add or remove any element, attribute or text in a HTML page;

• React to events: specify that a script should run when a specific event has occurred.

What JavaScript can do:

• Form validation: altering the contents of the page and blocking the form submission;

• Slideshow: display different images within the same space on a given page;

• Reload part of a page: request content and information from the server and inject it into the
current document as needed, without reloading the entire page;

• Filtering data: help users to find the information they need by providing filters;

• Test for browsers’ features and capabilities: test for the device type and add more user-
friendly styles and interaction methods based on the device type

What JavaScript Can’t Do: For security reasons browsers impose restrictions on the use of certain
JS features that they do support:

• A JavaScript program can open new browser windows, but, to prevent pop-up abuse by
advertisers, most browsers restrict this feature so that it can happen only in response to a
user-initiated event, such as a mouse click.

• A JavaScript program can close browser windows that it opened itself, but it is not allowed
to close other windows without user confirmation.

• A script cannot read or modify the content of documents loaded from other tabs or
windows. Similarly, a script cannot register event listeners on pages on different tabs or
windows.

Adding JavaScript to a Page:

• Embedded script: <script> ... JavaScript code goes here </script>

• External scripts: <script src=”my_script.js”></script>

Advantages of External Scripts

• It simplifies the HTML files: it helps keep content and behavior separate.

• When multiple web pages share the same JavaScript code, using the src attribute allows you
to maintain only a single copy of that code.

72

• If a file of JavaScript code is shared by more than one page, it only needs to be downloaded
once.

• Because the src attribute takes an arbitrary URL as its value, a JavaScript program or web
page from one web server can employ code exported by other web servers.

Execution of JavaScript Program:

• JavaScript program consists of all the JavaScript code in a web page (embedded and external
scripts), which see the same Document object and they share the same set of global
functions and variables.
If a script defines a new global variable or function, that variable or function will be visible
to any JavaScript code that runs after the script does.

• JavaScript programs are loaded and executed in the same order as they appear in the
document.

• If a JavaScript program registers an event handler, i.e. a function, this is invoked and
executed when the event occurs.
Examples of events are: document loaded, user interactions (clicks, submission of a button
form, …)

10.2. Core JavaScript

Case Sensitivity

• JavaScript is a case-sensitive language: this means that language keywords, variables,
function names, and other identifiers must always be typed with a consistent capitalization
of letters.

• Note that HTML is not case-sensitive.

• Many client-side JavaScript objects and properties have the same names as the HTML tags
and attributes they represent. While these tags and attribute names can be typed in any
case in HTML, in JavaScript they typically must be all lowercase.

Comments: // or /**/
Optional Semicolons.

JavaScript Data Types

• primitive types: numbers, strings of text, and Boolean;

• object types (e.g. array, function, …).

• Special JavaScript values null and undefined are primitive values, but they are not
numbers, strings, or 72et72Attr.

• Any JavaScript value that is not a number, a string, a 72et72Att, or null or undefined is an
object.

• The JavaScript interpreter performs automatic garbage collection for memory management.

Variables: var i=3;
If you don’t specify an initial value for a variable with the var statement, the variable is declared,
but its value is undefined until your code stores a value into it.

Null and Undefined

• null is a language keyword that is usually used to indicate the absence of a value.

73

• undefined value is the value of variables that have not been initialized and the value you
get when you query the value of an object property or array element that does not exist.

• null and undefined both indicate an absence of value and can often be used interchangeably.

Numbers: all defined has float
String: + operator to concatenate strings
Booleans: true or false
&&, ||, !

JavaScript Objects: are associative arrays. Key:value

• object.property

object[“property”]

• In strongly typed languages, an object can have only a fixed number of properties, and the
names of these properties must be defined in advance. In JavaScript this rule does not apply:
a program can create any number of properties in any object.

• Creation: var o={name:value,….}

• new o(par1,par2,…)

• a function, the this keyword refers to the “owner” of the function
• Deleting Properties: delete objectname.name

delete expression evaluates to true if the delete succeeded or if the delete had no effect.

Arrays:

• no fixed size

• access: a[0]

• a.length

• a.forEach(function(par1,par2,…) { ….});

Functions

• defined with the function keyword

The window Object: to manipulate the parts of the browser window
Dialog Boxes: The Window object provides three methods for displaying simple dialog boxes to the
user:

• alert() displays a message to the user and waits for the user to dismiss the dialog.

• confirm() displays a message, waits for the user to click an OK or Cancel button and
returns a 73et73Att value.

• prompt() displays a message, waits for the user to enter a string, and returns that string.

Timers: setTimeout() and setInterval() allow you to register a function to be invoked once or
repeatedly after a specified amount of time has elapsed.

• setTimeout(): method schedules a function to run after a specified number of
milliseconds elapses.

• setInterval(): is like setTimeout() except that the specified function is invoked
repeatedly at intervals of the specified number of milliseconds.

They both take as input arguments the called function and the interval of time, expressed in
milliseconds.

74

Scripts sometimes need to obtain information about the web browser in which they are running or
the desktop on which the browser appears.
The navigator property of a Window object refers to a Navigator object that contains browser
vendor and version number information. The Navigator object has four properties:

• appName: full name of the web browser;

• appVersion: browser vendor and version information;

• userAgent: string that the browser sends in its User-Agent HTTP header; platform: the
operating system.

The screen property of a Window object refers to a Screen object that provides information about
the size of the user’s display and the number of colors available on it.

The console object provides access to the browser’s debugging console. The specifics of how it
works varies from browser to browser, but there is a de facto set of features that are typically
provided

• log(), trace(), debug(), info(), warn(), error(): output log messages with
increasing level of severity, together with additional information, e.g. the stack trace in the
case of trace()

• time(), timeEnd(), timeLog(): starts and stops a timer and logs the time passed

• assert(): logs a message and stack trace to console if the first argument is false

• dir() logs a JavaScript representation of the specified object. If the object being logged is
an HTML element, then the properties of its DOM representation are printed,

• table(): logs an array of objects as a table

75

10.3. The Document Object Model

The DOM

• Every Window object has a document property that refers to a Document object, which
represents the content of the window.

• The Document object is part of the Document Object Model, or DOM, which is the
fundamental API for representing and manipulating the content of HTML.

• Recall: tree representation of an HTML document contains nodes representing HTML
elements.

DOM Representation of a Document

• The DOM represents the HTML document as a tree.

• The root of the tree is the Document node that represents the entire document.

• The nodes that represent HTML elements are Element nodes.

• The nodes that represent text are Text nodes.

• Document, Element, and Text are subclasses of Node.

Document Elements

• with a specified id attribute;

• with a specified name attribute;

• with the specified tag name;

• with the specified CSS class or classes;
• matching the specified CSS selector

Selecting Elements by Id

• Recall: any HTML element can have an id attribute and its value must be unique within the
document.

• You can select an element based on this unique id with the getElementById() method of
the Document object.
Var section1 = document.getElementById(“section1”);

• This is the simplest and most commonly used way to select elements.

76

Selecting Elements by Name

• Recall: the HTML name attribute is intended to assign names to form elements, and the value
of this attribute is used when form data is submitted to a server. Unlike id, however, the
value of a name attribute does not have to be unique: multiple elements may have the same
name (radio buttons and checkboxes).

• To select HTML elements based on the value of their name attributes, you can use the
getElementsByName() method of the Document object:
var radiobuttons = document.getElementsByName(“favorite_color”);

• It returns a NodeList object that behaves like a read-only array of Element objects.

Selecting Elements by Type

• You can select all HTML elements of a specified type (or tag name) using the
getElementsByTagName() method of the Document object.
Var spans = document.getElementsByTagName(“span”);

• returns a NodeList object.

Selecting Elements by CSS Class and Selectors

• You can select all HTML elements of a specified class using the
getElementsByClassName() method
var warnings = log.getElementsByClassName(“warning”);

• querySelectorAll() allows you to access nodes of the DOM based on a CSS-style
selector.
Var sidebarPara = document.querySelectorAll(“.sidebar p”);

var textInput = document.querySelectorAll(“input[type=’text’]”);

Node Object: Properties

• parentNode

• childNodes

• firstChild, lastChild

• nextSibling, previousSibling

• nodeType: the kind of node this is. Document nodes have the value 9. Element nodes have
the value 1. Text nodes have the value 3. Comments nodes are 8 and Document-Fragment
nodes are 11.

• nodeValue: the textual content of a Text or Comment node.

• nodeName: the tag name of an Element, converted to uppercase.

Document as a Tree of Element: When you are primarily interested in the Elements of a document
instead of the text within them, you can treat a document as a tree of Element objects, ignoring
Text and Comment nodes. Element properties are:
children, returns only Element objects.

• firstElementChild, lastElementChild

• nextElementSibling, previousElementSibling

• childElementCount: the number of element children.

Attributes as Element Properties

• The HTMLElement objects define read/write properties that mirror the HTML attributes of
the elements.

77

• Example: to query the URL of an image, you can use the src property of the HTMLElement
that represents the element:
var image = document.getElementById(“myimage”);

var imgurl = image.src;

• The Element type also defines getAttribute() methods that you can use to query HTML
attributes:
var image = document.getElementById(“myimage”);

var imgurl = image.getAttribute(“src”);

• Attribute values are all treated as strings, this means that getAttribute() never returns
a number, 77et77Att, or object.

• setAttribute() methods that you can use to set HTML attributes.

• 77et77Attribute() checks for the presence of a named attribute.

• removeAttribute() removes an attribute entirely.

Manipulating Nodes: It is possible to alter a document at the level of individual nodes. The
Document type defines methods for creating Element and Text objects, and the Node type defines
methods for inserting, deleting, and replacing nodes in the tree.
Creating Nodes: createElement()

• var newDiv = document.createElement(“div”);

• var ourText = document.createTextNode(“Put text here.”);

• Once you create an element in this way, that new element remains “floating” until you add
it to the document.

Inserting Nodes: Once you have a new node, you can insert it into the document.

• appendChild() is invoked on the Element node that you want to insert into, and it inserts
the specified node so that it becomes the last Child of that node.

• insertBefore() is like appendChild(), but it takes two arguments: the first argument is
the node to be inserted, the second argument is the node before which that node is to be
inserted. This method is invoked on the node that will be the parent of the new node, and
the second argument must be a child of that parent node.

Removing and Replacing Nodes

• The removeChild() method removes a node from the document tree. Invoke the method
on the parent node (not the node that you want to remove) and pass the child node that is
to be removed as the method argument.

• The replaceChild() method removes one child node and replaces it with a new one.
Invoke this method on the parent node, passing the new node as the first argument and the
node to be replaced as the second argument.

78

10.4. Handling events

JavaScript Timeline

• The web browser creates a Document object and begins parsing the web page.

• When the HTML parser encounters <script> elements, it adds those elements to the
document and then executes the script. These scripts are executed synchronously, and the
parser pauses while the script downloads (if necessary) and runs.

• The document is completely parsed at this point, but the browser may still be waiting for
additional content, such as images, to load. When all such content finishes loading, and when
all scripts have loaded and executed, the document.readyState property changes to
complete and the web browser fires a load event on the Window object.

• From this point on, event handlers are invoked asynchronously in response to user input
events, network events, timer expirations, and so on.

Events are occurrences that a web browser will notify your JavaScript program about
If a JavaScript application cares about a particular type of event, it can register one or more functions
to be invoked when events of that type occur.
Event type is a string that specifies what kind of event occurred, examples are: mousemove,
keydown, road, …
Event target is the object on which the event occurred or with which the event is associated.
When we speak of an event, we must specify both the type and the target: for example a load event
on a Window, or a click event on a <button> Element.
Window, Document, and Element objects are the most common event targets in client-side
JavaScript applications.
Event Handler or event listener is a function that handles or responds to an event.

• Applications register their event handler functions with the web browser, specifying an
event type and an event target.

• When an event of the specified type occurs on the specified target, the browser invokes the
handler.

• When event handlers are invoked for an object, we sometimes say that the browser has
“fired”, “triggered”, or “dispatched” the event.

Event object is an object that is associated with a particular event and contains details about that
event. Event objects are passed as an argument to the event handler function.
All event objects have a type property that specifies the event type and a target property that
specifies the event target.
Each event type defines a set of properties for its associated event object, for example the object
associated with a mouse event includes the coordinates of the mouse pointer.

Types of Events:

• Mouse events are generated when the user moves or clicks the mouse over a document.
o The mousemove event is triggered any time the user moves or drags the mouse.
o The mousedown and mouseup events are triggered when the user presses and

releases a mouse button.
o The click event it is triggered on any document element, not just form elements,

when a click occurs.
o The second click event will be followed by a dblclick event.

79

o When the user moves the mouse so that it goes over a new element, the browser
fires a mouseover event on that element. When the mouse moves so that it is no
longer over an element, the browser fires a mouseout event on that element.

o When the user rotates the mouse wheel, browsers trigger a mousewheel event.

• Keyboard events are triggered on whatever document element has keyboard focus, and
they bubble up to the document and window.

o The keydown and keyup events are low-level keyboard events: they are triggered
whenever a key is pressed or released.

o When a keydown event generates a printable character, an additional keypress
event is triggered after the keydown but before the keyup.

• Form Events
o Form elements typically fire a click or change event when the user interacts with

them, and you can handle these events by defining an onclick or onchange event
handler.

o In general, form elements that are buttons fire a click event when activated (even
when this activation happens through the keyboard rather than via an actual mouse
click).

o Other form elements fire a change event when the user changes the value
represented by the element. This happens when the user enters text in a text field or
selects an option from a drop-down list. Note that this event is not fired every time
the user types a key in a text field. It is fired only when the user changes the value of
an element and then moves the input focus to some other form element.

o Radio buttons and checkboxes are buttons that have a state, and they fire both click
and change events; the change event is the more useful of the two.

o Form elements also fire a focus event when they receive keyboard focus and a blur
event when they lose it.

o Each Form element has an onsubmit event handler to detect form submission and
an onreset event handler to detect form resets.

o Form validation: the onsubmit handler is triggered just before the form is submitted
by a click on a submit button; it can cancel the submission by returning false.

o The onreset event handler is invoked just before the form is reset, and it can prevent
the form elements from being reset by returning false, it is used to make the user
confirm the reset.

• Window events represent occurrences related to the browser window itself.
o The load event is fired when a document and all of its external resources (such as

images, style sheets, or scripts) are fully loaded and displayed to the user.
o The unload event is the opposite of load: it is triggered when the user is navigating

away from a document. An unload event handler might be used to save the user’s
state.

o The beforeunload event is similar to unload but gives you the opportunity to ask the
user to confirm that they really want to navigate away from your web page.

o The resize and scroll events are fired on a window when the user resizes or scrolls
the browser window.

Registering Event Handlers: 2 ways

• set a property on the object or document element that is the event target:
o You can set an event handler property in JavaScript code;

window.onload = function() {

80

 var 80et = document.getElementById(“address”);

 80et.onsubmit = function() { return validate(this); }

}
o For document elements, you can set the corresponding attribute directly in HTML.

<button onclick=”alert(‘Thank you’);”>Click Here</button>

• pass the handler to a method of the object or element, for handler registration:
o Any object that can be an event target (includes the Window, Document and all

Elements objects), defines a method named addEventListener(); takes two
mandatory arguments:

▪ the event type (string without the on prefix) for which the handler is being
registered;

▪ the function that should be invoked when the specified type of event occurs
<button id=”mybutton”>Click me</button>

<script>

 var b = document.getElementById(“mybutton”);

 b.onclick = function() { alert(“Thanks for clicking me!”); };

 b.addEventListener(“click”, function() { alert(“Thanks again!”); });

</script>

It allows adding more than a single handler for an event. This is particularly useful
for AJAX libraries, JavaScript modules, or any other kind of code that needs to work
well with other libraries/extensions.
It gives you finer-grained control of the phase when the listener is activated
(capturing vs. bubbling).
It works on any DOM element, not just HTML elements.

o a different method, named attachEvent(), is paired with a
removeEventListener() method which removes an event handler function from
an object. It is useful to temporarily register an event handler and then remove it
soon afterward.
Document.removeEventListener(“mousemove”, handleMouseMove);

document.removeEventListener(“mouseup”, handleMouseUp);

81

10.5. Form Validation

Form validation: when you enter data in a Web page, the Web application checks it to see that the
data is correct. If correct, the application allows the data to be submitted to the server and (usually)
saved in a database; if not, it gives you an error message explaining what corrections need to be
made.
There are three main reasons to validate forms:

• To get the right data, in the right format: Web applications won’t work properly if the user’s
data is stored in the incorrect format, if they don’t enter the correct information, or omit
information altogether.

• To protect the users’ accounts by forcing them to enter secure passwords.

• To protect ourselves, there are many ways that malicious users can misuse unprotected
forms to damage the application they are part of.

There are two different types of form validation:

• Client-side validation occurs in the browser, before the data has been submitted to the
server. This is more user-friendly than server-side validation as it gives an instant response.
This can be further subdivided:

o JavaScript validation is coded using JavaScript. It is completely customizable.
o Built-in form validation using HTML5 form validation features. This has better

performance, but it is not as customizable as JavaScript.

• Server-side validation occurs on the server, after the data has been submitted. It is used to
validate the data before it is saved into the database. If the data fails authentication, a
response is sent back to the client to tell the user what corrections to make. Server-side
validation is not as user-friendly as client-side validation, as it does not provide errors until
the entire form has been submitted. However, server-side validation is the application’s last
line of defense against incorrect or even malicious data.

Developers use a combination of client-side and server-side validation.

HTML 5 Validation: One of the features of HTML5 is the ability to validate most user data without
relying on scripts. This is done by using validation attributes on form elements, which allow you to
specify rules for a form input. If the entered data follows all those rules, it is considered valid; if not,
it is considered invalid.
When an element is valid:

• The element matches the :valid CSS pseudo-class; this will let you apply a specific style to
valid elements.

• If the user tries to send the data, the browser will submit the form, provided there is nothing
else stopping it from doing so (e.g., JavaScript).

When an element is invalid:

• The element matches the :invalid CSS pseudo-class; this will let you apply a specific style to
invalid elements.

• If the user tries to send the data, the browser will block the form and display an error
message.

HTML5 provides the constraint validation API to check and customize the state of a form element.
Among other things, it’s possible to change the text of the error message with the
setCustomValidity() method.

82

Var email = document.getElementById(“provide_email”);

email.addEventListener(“input”, function (event) {

 if (email.validity.typeMismatch) {

 email.setCustomValidity(“Please insert an email address!”);

 } else {

 email.setCustomValidity(“”);

 }

});

Validating Forms without a Built-in API. To validate a form, you have to ask yourself a few
questions:

• What kind of validation should I perform? You need to determine how to validate your data:
string operations, type conversion, regular expressions, etc. Remember that form data is
always text and is always provided to your script as strings.

• What should I do if the form does not validate? You have to decide how the form will
behave: should you highlight the fields which are in error? Should you display error
messages?

• How can I help the user to correct invalid data? In order to reduce the user’s frustration, it’s
very important to provide as much helpful information as possible in order to guide them in
correcting their inputs. You should offer up-front suggestions so they know what’s expected,
as well as clear error messages.

83

10.6. AJAX – Scripted HTTP
Synchronous vs Asynchronous

• When a browser comes across a <script> tag, it will typically stop processing the rest of the
page until it has loaded and processed it. This is an example of synchronous processing
model

• This can need time, e.g. if for example the script requires data from the server. Then you
need to further wait the answer from the server

• AJAX instead uses an asynchronous (non-blocking) processing model, i.e. the user can do
other things while the web browser is waiting for the data to load, speeding up the user
experience.

• When the server responds with the data, and event is fired, which can call a function that
processes the data. This function can update only one element of the page, instead of the
whole page.

AJAX:

• Historically, AJAX stands for Asynchronous JavaScript And XML, an acronym containing the
technologies used at the time (JavaScript and XML). AJAX now indicates a group of
technologies that offer asynchronous functionality in the browser. The key feature of an Ajax
application is that it uses scripted HTTP to initiate data exchange with a web server without
causing pages to reload.

• AJAX uses the XMLHttpRequest object to communicate with servers. It can send and receive
information in various formats, including JSON, XML, HTML, and text files. AJAX’s most
appealing characteristic is its “asynchronous” nature, which means it can communicate with
the server, exchange data, and update the page without having to refresh the page.

• The ability to avoid page reloads results in responsive web applications.

• A web application might use Ajax technologies to log user interaction data to the server or
to improve its start-up time by displaying only a simple page at first and then downloading
additional data and page components on an as-needed basis.

Using XMLHttpRequest:

• Each instance of this class represents a single request/response pair, and the properties and
methods of the object allow you to specify request details and extract response data.

Var request = new XMLHttpRequest();

• An HTTP request consists of four parts: the HTTP request method; the URL being requested;
an optional set of request headers, which may include authentication information; an
optional request body.

• The HTTP response sent by a server has three parts: a numeric and textual status code that
indicates the success or failure of the request; a set of response headers; the response body

Specifying the Request

• After creating an XMLHttpRequest object, the next step in making an HTTP request is to call
the open() method of your XMLHttpRequest object:

 request.open(‘GET’, ‘http://www.example.org/some.file’);

• The first parameter of the open() method is the HTTP request method. Keep the method
all-capitals as per the HTTP standard, otherwise some browsers might not process the
request.

84

• The second parameter is the URL that is the subject of the request. This is relative to the URL
of the document that contains the script that is calling open(). As a security feature, you
cannot call URLs on third-party domains. Be sure to use the exact domain name on all of your
pages or you will get a “permission denied” error.

• To set the request headers, if any, you can use the setRequestHeader() method. POST
requests, for example, need a “Content-Type” header to specify the MIME type of the
request body:

request.setRequestHeader(“Content-Type”, “text/plain”);

• If you call setRequestHeader() multiple times for the same header, the new value does not
replace the previously specified value: instead, the HTTP request will include multiple copies
of the header or the header will specify multiple values.

• The final step in making an HTTP request with XMLHttpRequest is to send it off to the server,
with the send() method:

request.send();

Encoding the Request Body

• Recall: HTTP POST requests include a request body that contains data the client is passing to
the server.

• Form-encoded requests: URI encoding (replacing special characters with hexadecimal
escape codes) on the name and value of each form element, separate the encoded name
and value with an equals sign, and separate these name/value pairs with ampersands.

Find=pizza&zipcode=02134&radius=1km

form data encoding format has a formal MIME type
application/x-www-form-urlencoded

• Json-encoded requests:
request.setRequestHeader(“Content-Type”, “application/json”);

Cross Origin Resource Sharing (CORS)

• The XMLHttpRequest object can normally issue HTTP requests only to the server from which
the document that uses it was downloaded, (same-origin security policy). That is, browsers
do not load AJAX responses from other domains. There are different workarounds, among
those we present CORS.

• Cross-Origin Resource Sharing, (CORS): is a mechanism that uses additional HTTP headers to
let a user agent gain permission to access selected resources from a server on a different
origin (domain) than the site currently in use. A user agent makes a cross-origin HTTP request
when it requests a resource from a different domain, protocol, or port than the one from
which the current document originated.

• Example: A HTML page served from http://domain-a.com makes an src request for
http://domain-b.com/image.jpg.

• The Cross-Origin Resource Sharing standard works by adding new HTTP headers that allow
servers to describe the set of origins that are permitted to read that information using a web
browser.

• Cross-origin requests do not normally include any user credentials: username and password,
cookies, HTTP authentication tokens, …

Retrieving the Response

• The same object that sent the request deals with the answer. When you send the request,
you should provide the name of a JavaScript function to handle the response:

request.onload = nameOfTheFunction;

http://domain/
http://domain/

85

• The function needs to check the request’s state. If the state has the value of
XMLHttpRequest.DONE, that means that the full server response was received and it’s OK
to continue processing it.

• The full list of the readyState values is as follows:
o 0 (uninitialized) or (request not initialized), open() has not been called yet;
o 1 (loading) or (server connection established), open() has been called;
o 2 (loaded) or (request received), headers have been received;
o 3 (interactive) or (processing request), the response body is being received;
o 4 (complete) or (request finished and response is ready), the response is complete.

• Next, check the response code of the HTTP response (successful = 200).
Request.status == 200

• After checking the state of the request and the HTTP status code of the response, you have
two options to access that data:

• request.responseText – returns the server response as a string of text;

• request.responseXML – returns the response as an XMLDocument object you can
traverse with JavaScript DOM functions.

Types of receivable data

• HTML
o Pros: easy to write, request and display; The data sent from the server can go straight

into the page, no need to process it (e.g. through JavaScript).
o Cons: the server must produce the HTML in a format that is ready for use on our

page; it is not wellsuited for use in applications other than web browsers, i.e. no good
data portability.

• XML
o Pros: it is a flexible data format, and can represent complex structures. It works well

with different platforms and applications. It is processed using the same HTML DOM
methods.

o Cons: it is considered a verbose language, the tags add a lot of extra characters to
the file being sent; it can require a lot of code to be processed.

• JSON
o Pros: it can be called from any domain (CORS); more concise than the other twos;

commonly used with JavaScript (it has gained wide use across web applications).
o Cons: the syntax is very strict (unlike HTML), i.e. a missed quote, comma or colon can

“break” the file; since it is still JavaScript, it can contain malicious content, therefore
only use JSON that has been produced by trusted sources

Loading JSON with AJAX

• The server sends JSON data to a web browser as a string

• When it reaches the browser, a script must convert the string into a KavaScript object —
deserialization of the object — through the parse() method of the JSON object. It is a
global object, so you do not need to instantiate it.

• Once the string has been parsed, the script can access the data in the object, and use it to
create HTML.

• The HTML is added to the page using the innerHTML property, thus only use it when you
are confident that it does not contain malicious code.

• The method JSON.stringify() converts objects into a string using JSON notation, thus
to send the object from the browser back to the server, a.k.a. serialization of the object.

86

10.7. jQuery

10.7.1. Introduction to jQuery
jQuery is a fast, small, and featurerich JavaScript library (http:// jquery.com/).
Offers a simple way to achieve a variety of common JavaScript tasks quickly and consistently across
all major browsers and without any fallback code needed.
It allows to:

• Select elements in a simpler and more powerful way with CSS-style selectors;

• Manipulate the DOM tree;

• Attach event listeners without any fallback code.

jQuery is a lightweight, “write less, do more”, JavaScript library. Its aim is to make easier to use JS
on a website.
It allows to perform many tasks, that otherwise would have required many lines of JavaScript code,
in single lines of code.
There are many other JS libraries available. jQuery is one of the most popular and extendable.
Some of jQuery’s features are: HTML/DOM manipulation, CSS manipulation, HTML event methods,
Effect and animations, Ajax, Utilities.

jQuery Basics

• The jQuery library defines a single global function named jQuery(), with the symbol $ as a
shortcut for it.
Var divs = $(“div”);

• The value returned by this function represents a set of zero or more DOM elements and is
known as a jQuery object.

• jQuery objects define many methods for operating on the sets of elements they represent.
$(“p.details”).css(“background-color”, “yellow”).show(“fast”);

jQuery objects are array-like and they have the following properties:

• The length property;

• The selector property is the selector string (if any) that was used when the jQuery object
was created.

• The context property is the context object that was passed as the second argument to $(),
or the Document object otherwise.

• The jquery property: testing for the existence of this property is a simple way to distinguish
jQuery objects from other arraylike objects.

Queries and Query Results

• When you pass a CSS selector string to $(), it returns a jQuery object that represents the
set of matched elements.

• jQuery objects are array-like: they have a length property and you can access the contents
of the jQuery object using standard squarebracket array notation:
$(“body”).length

$(“body”)[0]

• If you prefer not to use array notation with jQuery objects, you can use the size() method
instead of the length property and the get() method instead of indexing with square
brackets. If you need to convert a jQuery object to a true array, call the toArray() method.

87

Creating DOM Elements: If a string is passed as the parameter to $(), jQuery examines the string
to see if it looks like HTML (i.e., it starts with <tag ... >). If not, the string is interpreted as a
selector expression. But if the string is a HTML snippet, jQuery attempts to create new DOM
elements, then a jQuery object is created and returned.

Var img = $(“”,

 { src: url,

 css: {borderWidth:5},

 click: handleClick

 });

Each() Method

• If you want to loop over all elements in a jQuery object, you can call the each() method
instead of writing a for loop. The each() method is similar to the forEach() array
method.

• It expects a callback function as its sole argument, and it invokes that callback function once
for each element in the jQuery object.

• Despite the power of the each() method, it is not very commonly used, since jQuery
methods usually iterate implicitly over the set of matched elements and operate on them
all.

10.7.2. jQuery Getters and Setters
jQuery objects allow you to get or set the value of HTML attributes, CSS styles or element content:

• jQuery uses a single method as both getter and setter. If you pass a new value to the method,
it sets that value; if you don’t specify a value, it returns the current value.

• When used as setters, these methods set values on every element in the jQuery object, and
then return the jQuery object to allow method chaining.

• When used as getters, these methods query only the first element of the set of elements
and return a single value, therefore they can only appear at the end of a method chain.

• When used as setters, these methods often accept object arguments. In this case, each
property of the object specifies a name and a value to be set.

• When used as setters, these methods often accept functions as values. In this case, the
function is invoked to compute the value to be set.

The attr() method acts as both a getter and a setter.

88

Getting and Setting CSS Attributes

• The css() method is similar to the attr() method, but it works with the CSS styles of an
element.

• When querying style values, css() returns the current (or computed) style of the element:
the returned value may come from the style attribute or from a stylesheet.

Getting and Setting CSS Classes

• jQuery defines addClass() and removeClass() to add and remove classes from the
selected elements.

• toggleClass() adds classes to elements that don’t already have them and removes
classes from those that do.

• hasClass() tests for the presence of a specified class.
Var h1 = $(“h1”);

h1.addClass(“big”);

h1.removeClass(“big”);

h1.toggleClass(“big”);

if (h1.hasClass(“big”)) {

 ...

}

Getting and Setting HTML Form Values: val() is a method for setting and querying the value
attribute of HTML form elements and also for querying and setting the selection state of
checkboxes, radio buttons, and <select> elements.

Getting and Setting Element Content

• The text() and html() methods query and set the plain-text or HTML content of an element
or elements.

• When invoked with no arguments, text() returns the plain-text content of all descendant
text nodes of all matched elements.

• If you invoke the html() method with no arguments, it returns the HTML content of just the
first matched element.

• If you pass a string to text() or html(), that string will be used for the plain-text or HTML-
formatted text content of the element, and it will replace all existing content.

89

10.7.3. Altering the DOM Structure
Inserting and Replacing Elements

• Each of the following methods takes an argument that specifies the content that is to be
inserted into the document. This can be a string of plain text or of HTML to specify new
content, or it can be a jQuery object or an Element or text Node.

• The insertion is made into or before or after or in place of (depending on the method) each
of the selected elements.

• If the content to be inserted is an element that already exists in the document, it is moved
from its current location. If it is to be inserted more than once, the element is cloned as
necessary.

• These methods all return the jQuery object on which they are called.

Copying Elements

• If you insert elements that are already part of the document, those elements will simply be
moved, not copied, to their new location.

• If you are inserting the elements in more than one place, jQuery will make copies as needed.

• If you want to copy elements to a new location instead of moving them, you must first make
a copy with the clone() method. Clone() makes and returns a copy (jQuery object) of each
selected element (and of all of the descendants of those elements).

Wrapping Elements: jQuery defines three wrapping functions.

• wrap() wraps each of the selected elements.

• wrapInner() wraps the contents of each selected element.

• wrapAll() wraps the selected elements as a group.
These methods are usually passed a newly created wrapper element or a string of HTML used to
create a wrapper.

$(“h1”).wrap(document.createElement(“I”));

$(“.inner”).wrapInner(“<div class=’new’></div>”);

$(“.inner”).wrapAll(“<div class=‘new’></div>”);

90

Deleting Elements: jQuery defines several methods for deleting elements.

• empty() removes all children of each of the selected elements.

• remove() removes the selected elements (together with their event handlers and data) from
the document. If you pass an argument, that argument is treated as a selector, and only
elements of the jQuery object that also match the selector are removed.

• detach() method works like remove() but does not remove event handlers and data.
Detach() may be more useful when you want to temporarily remove elements from the
document for later reinsertion.

• unwrap() method performs element removal in a way that is the opposite of the wrap() or
wrapAll() method: it removes the parent element of each selected element without affecting
the selected elements or their siblings. That is, for each selected element, it replaces the
parent of that element with its children.

10.7.4. Handling Events with jQuery

Simple Event Handler Registration

• jQuery defines simple event-registration methods for each of the commonly used and
universally implemented browser events.

• To register an event handler for click events, for example, just call the click() method:
$(“p”).click(function() { $(this).css(“background-color”, “gray”); });

• Calling a jQuery event-registration method registers your handler on all of the selected
elements. This is typically much easier than one-at-a-time event handler registration with
addEventListener().

jQuery Event Handler

• The method bind() binds a handler for a named event type to each of the elements in the
jQuery object. Using bind() allows you to use more advanced event registration features.

• bind() expects an event type string as its first argument and an event handler function as
its second.

$(“p”).click(f); $(“p”).bind(“click”, f);

• If the first argument is a space separated list of event types, then the handler function will
be registered for each of the named event types.
$(“a”).hover(f);
$(“a”).bind(“mouseenter mouseleave”, f);

91

Deregistering Event Handlers

• After registering an event handler with bind() (or with any of the simpler event registration
methods), you can deregister it with unbind().

• unbind() only deregisters event handlers registered with bind() and related jQuery
methods (not with addEventListener()).

• With no arguments, unbind() deregisters all event handlers (each event for each element):
$(“*”).unbind()

• With string arguments, all handlers for the named event type are unbound from all elements
in the jQuery object:

$(“a”).unbind(“mouseover mouseout”);

10.7.5. AJAX with jQuery
jQuery provides several methods for AJAX functionality. With these, it is possible to request text,
HTML, XML, or JSON from remote servers using both HTTP GET and POST.
Writing regular AJAX code can be tricky, because different browsers have different syntax for AJAX
implementation. Thus, it may be necessary to write extra code to test for different browsers. jQuery
takes care of this.

AJAX Function

• The jQuery.ajax() function performs asynchronous HTTP requests. It underlies all Ajax
requests sent by jQuery. It is often unnecessary to directly call this function, as several
higher-level alternatives are available.

• ajax() accepts a single argument: an options object whose properties specify the details
about how the AJAX request is to be performed.

• By default, data passed in to the data option as an object will be processed and transformed
into a query string, fitting to the default content-type “application/xwww- form-

urlencoded”.
$.ajax({

 method: “POST”,

 url: “some.jsp”,

 data: { name: “John”, location: “Boston” }

})

 .done(function(msg) {

 alert(“Data Saved: “ + msg);

 });

AJAX Utility Functions – get()

• jQuery.get(), load data from the server using a HTTP GET request.

• GET is basically used for getting data from a server. It may also return cached data.
$.get(URL, callback);

• The required URL parameter specifies the URL we wish to request.

• The optional callback parameter is the name of a function to be executed if the request
succeeds. The callback has two parameters: the content of the page requested, and the
status of the request

$.get(“test.jsp”, { name: “John”, time: “2pm” })

 .done(function(data) {

 alert(“Data Loaded: “ + data);

 });

92

AJAX Utility Functions – post()

• jQuery.post(), load data from the server using a HTTP POST request. URL specifies the URL
we wish to request

$.post(URL, data, callback)

• The optional data parameters specifies some data to send along with the request.

• The optional callback parameter is the name of a function to be executed if the request
succeeds.

$.post(“test.jsp”, { name: “John”, time: “2pm” })

 .done(function(data) {

 alert(“Data Loaded:” + data);

 });

AJAX Utility Functions – getScript(): jQuery.getScript(), load a JavaScript file from the server
using a GET HTTP request, then execute it.

$.getScript(“ajax/test.js”, function(data, textStatus, jqxhr) {

 console.log(data); // Data returned

 console.log(textStatus); // Success

 console.log(jqxhr.status); // 200

 console.log(“Load was performed.”);

});

The load() Method

• load() is a simple but powerful AJAX method. It loads data from a server and puts it into a
selected element. Its syntax:

$(selector).load(URL,data,callback);

• The URL parameter specifies the URL you want to load

• The selector specifies the elements where the returned data will be loaded

• The optional data parameter specifies a set of querystring key/value pairs to send along
with the request.

• The optional callback parameter is the name of the function to be executed after the
load() method is completed and the data are returned.

• The load() method with an URL as argument will asynchronously load the content of that
URL and then insert that content into each of the selected elements, replacing any content
that is already there.

$(“#result”).load(“ajax/test.html”);

• The load() method, allows you to specify a fragment of the document to be inserted.
$(“#result”).load(“ajax/test.html #container”);

• The POST method is used if data is provided as an object; otherwise, GET is assumed.
$(“#address”).load(“address.jsp”, { zipcode:”02134”, country:”IT” });

• An optional argument to load() is a callback function that will be invoked when the AJAX
request completes successfully or unsuccessfully.

Load text into a div

93

94

11. Bootstrap and Font Awesome

11.1. Bootstrap
Bootstrap is an open source toolkit for developing websites, which includes: HTML, CSS, Javascript
(JS); Font styles; Icons; …

Bootstrap History

• Bootstrap is an open source product from Mark Otto and Jacob Thornton (employees at
Twitter).

• There was a need to standardize the frontend toolsets of engineers across the company.

• “In the earlier days of Twitter, engineers used almost any library they were familiar with to
meet front-end requirements. Inconsistencies among the individual applications made it
difficult to scale and maintain them. Bootstrap began as an answer to these challenges and
quickly accelerated during Twitter’s first Hackweek. By the end of Hackweek, we had
reached a stable version that engineers could use across the company.”

Bootstrap File Structure:

Minified Version of a File

• Minification is the process of removing all unnecessary characters from source code without
changing its functionality. These unnecessary characters usually include: white space
characters; new line characters; comments.

• Minified source code is especially useful for interpreted languages deployed and transmitted
on the Internet (such as JavaScript), because it reduces the amount of data that needs to be
transferred.

• Minification can be distinguished from data compression in that the minified source can be
interpreted immediately without the need for an uncompression step.

Responsive Web Design

• The term responsive web design was coined by Ethan Marcotte.

• Responsive web design comprises three techniques: flexible grid layout; flexible images and
media; media queries.

• Viewport: viewable area of the device.

• Screen size: physical display area of a device.

Containers are the most basic layout element in Bootstrap and are required when using the default
grid system.

• <div class=“container">...</div> add a fixedwidth, centered layout meaning its
max-width changes at each breakpoint.

95

• <div class="container-fluid">...</ div> to use a fluid layout (100% wide all the
time).

The Grid System: Grids set consistent proportions and spaces between items which helps to create
a professional looking design. A grid helps in:

• Creating a continuity between different pages which may use different designs;

• Helps users predict where to find information on various pages;

• Makes it easier to add new content to the site in a consistent way;

• Helps people collaborate on the design of a site in a consistent way.
The default Bootstrap grid system divides the page with rows (row) and utilizes 12 columns (col).

Bootstrap Components: Typography; Code; Table; Figures; Forms; Buttons; Navbar; Dropdown
Menu; Icons; …

Code

• Wrap inline snippets of code with <code>. Be sure to escape HTML angle brackets.
For example, <code><section></code> should be wrapped as inline.

• Use <pre>s for multiple lines of code. The <pre> tag defines preformatted text. Text in a

<pre> element is displayed in a fixed-width font (usually Courier), and it preserves both
spaces and line breaks.

<pre><code>

<p>Sample text here...</p>

<p>And another line of sample text

here...</p>

</code></pre>

96

Tables: Add the base class .table to any <table> to use Bootstrap table style.
<table class="table">

Other Table Styles

• Use .table-striped to add zebra-striping to any table row within the <tbody>.

• Add .table-bordered for borders on all sides of the table and cells.

• Add .table-hover to enable a hover state on table rows within a <tbody>.

• Add .table-responsive for horizontally scrolling tables.

Figures

• Use the included .figure, .figure-img and .figure-caption classes to provide some
baseline styles for the HTML5 <figure> and <figcaption> elements.

• Add the .img-fluid class to your to make it responsive.

Buttons

<button type="button" class="btn btn-primary">Primary</button>

<button type="button" class="btn btn-secondary">Secondary</button>

<button type="button" class="btn btn-success">Success</button>

<button type="button" class="btn btn-danger">Danger</button>

<button type="button" class="btn btn-warning">Warning</button>

<button type="button" class="btn btn-info">Info</button>

<button type="button" class="btn btn-light">Light</button>

<button type="button" class="btn btn-dark">Dark</button>

<button type="button" class="btn btn-link">Link</button>

Replace the default modifier classes with the .btnoutline-* ones to remove all background images
and colors on any button.

Navs: Navigation in Bootstrap share general markup and styles, from the base .nav class.
You can add classes to switch between different styles:

• .justify-content-center

• .flex-column

• .nav-tabs

• .nav-pills

<nav class="nav">

Pagination: is built with <nav> and <list> HTML elements. Since pages likely have more than one
navigation section, it’s advisable to provide a descriptive aria-label for the <nav> to reflect its
purpose.

97

11.2. Font Awesome

Using Font Awesome: <i class="fas fa-camera-retro fa-sm"></i>

98

12. Semantic Web

Evolution of the Web

• Initially, the Web was an hypertext made of resources (HTML documents, images, ...) so that
human beings can browse, surf and access them

• The current vision of the Web 3.0 encompasses other kinds of resources, namely the data
(genoma and proteins, clinical trials, scientific and statistical data, Internet-of-Thing
streaming data), which need to be connected by means of typed links so that their structure
and semantics is explicit and they can be accessed by both human beings and machines

Resource Description Framework (RDF)

• RDF is a framework for representing information in the Web

• The core structure of the data model is a set of RDF triples, each consisting of a subject (URI),
a predicate (URI) and an object (URI or literal). It mimics the basic sentence of the human
language (subject - predicate - object).

• Asserting an RDF triple says that some relationship, indicated by the predicate, holds
between the resources denoted by the subject and object. This statement corresponding to
an RDF triple is known as an RDF statement

• A set of such triples is called an RDF graph. An RDF graph can be visualized as a node and
directed-arc diagram, in which each triple is represented as a node-arc-node link

• An RDF document is a document that encodes an RDF graph in a concrete RDF syntax, such
as RDF/XML, N-Triples, Turtle, JSON-LD, RDFa, or TriG

Example of RDF

99

Different data formats

• The basic idea is that an RDF triple is a combination of a subject, a predicate, and an object.

• Subjects, predicates and objects can be annotated with IRIs (an IRI is, fundamentally, an URL
that can also contain UNICODE characters).

• Objects can also be annotated with a Literal value. A Literal can be a string, an integer, a
double, a date, or another datatype.

• An RDF graph/RDF database is “simply” a set of triples.

• More recently, a fourth field has been added, making it a quadruple. It is the context, and it
can be used to group triples in subgraphs, i.e. each triple may have a fourth value declaring
the name of the subgraph to which it belongs. If no value is specified, the triple belongs to
the default graph.

Literal Datatypes

• Datatypes represent values, such as strings, numbers, and dates. The abstraction used in
RDF is compatible with XML Schema (https://www.w3.org/TR/xmlschema11-2/).

• A datatype consists of a lexical space, a space value, and a lexical-tovalue mapping.

• So, for example, the xsd:boolean datatype is composed in this way:

A language to query RDF: SPARQL

• SPARQL is the most famous language used today to interrogate RDF databases.

• It is based on providing a basic pattern structure P, which is matched to the underlying
database (graph homomorphism).

• With SPARQL it is possible to interrogate an RDF database and manipulate it (CRUD
operations).

• SPARQL is a set of specifications that provide languages and protocols to query and
manipulate RDF graph content on the Web or in an RDF store.

Characteristics of RDF and SPARQL

100

• To avoid to write each time very long IRIs, SPARQL, such as XMLS, uses prefixes,
corresponding to namespaces. Prefixes identify namespaces. For example:

• Here dc: is the prefix of the URL http://purl.org/dc/elements/1.1/. Thus, the string dc:title is
to be read as http://purl.org/dc/elements/1.1/title.

• The second prefix, :, is the base prefix. It is intended for the URL that is used more frequently
in the database

• The prefixes are defined at the beginning of an RDF file or a query.

SPARQL query forms

• SQL has only one query form: it takes a relational database as an input, and returns a
relational database (a single table) as output. In certain cases (such as aggregation queries)
this output relation may be composed by only one value, but it is still a relation.

• SPARQL, on the other hand, has 4 different query forms. It takes in input one RDF database,
and it can return 3 different types of results, depending on its form.

• This results are: a relation (SELECT), a subgraph (CONSTRUCT), a boolean value (ASK), a
subgraph (DESCRIBE).

…

	1. Introduction to Webapps
	2. Git
	3. Maven
	4. Java Servlet
	4.1. Technologies for Web applications
	4.2. Java Servlet
	4.3. Apache Tomcat
	4.4. SQL Injection
	4.5. Examples
	4.6. Java Servlets and Access to the Database

	5. Java Server Pages (JSP)
	5.1. JavaServer Pages
	5.2. Model-View-Controller

	6. HTTP and REST
	6.1. URL
	6.2. MIME
	6.3. HTTP 1.1
	6.4. The REST architectural paradigm
	6.5. AJAX

	7. Markup Languages
	7.1. Markup languages
	7.2. HTML
	7.3. XML
	7.4. JSON

	8. HTML
	8.1. Main Elements
	8.2. HTML5 New Elements

	9. CSS
	9.1. Introduction to CSS
	9.2. Color Property
	9.3. The box Model
	9.4. Floating and Positioning
	9.5. Responsive Web Design

	10. Javascript
	10.1. Introduction to JavaScript
	10.2. Core JavaScript
	10.3. The Document Object Model
	10.4. Handling events
	10.5. Form Validation
	10.6. AJAX – Scripted HTTP
	10.7. jQuery
	10.7.1. Introduction to jQuery
	10.7.2. jQuery Getters and Setters
	10.7.3. Altering the DOM Structure
	10.7.5. AJAX with jQuery

	11. Bootstrap and Font Awesome
	11.1. Bootstrap
	11.2. Font Awesome

	12. Semantic Web

