
An overview of the CoAP protocol architecture,
features and its extensions

Stefano Ivancich
Department of Information Engineering (DEI)

University of Padova, Italy
Email: stefano.ivancich@studenti.unipd.it

Student ID: 1227846

Fig. 1: Stefano Ivancich in 2021

Abstract—Today (2021), several billions of devices are
connected daily to the internet, so a very huge amount of a
data is sent and managed every second. In the next years,
it is expected that even more devices like sensors, actuators
for domestic or industrial usage will connect to the
internet. In this context, we review an HTTP like protocol
called Constrained Application Protocol (CoAP) that was
developed by the Internet of Engineering Task (IETF)
to work on constrained IoT devices operating in lossy
environments. Although this protocol is lightweight and
efficient compared to other IoT protocols such as HTTP
or MQTT, it has some limitation in some scenarios, for
example when strong reliability is needed or in streaming
applications. For this reason we also overview, from the
most recent literature some modifications, one is CoAP
over TCP that guarantee reliability, another is CoAP-SC
that has a good mechanism to handle with error and flow
control that are crucial in streaming applications.

Index Terms—CoAP, IoT, TCP, UDP, Streaming, en-
hancements in CoAP

I. INTRODUCTION

The Hypertext Transfer Protocol (HTTP) [1] is one of
the most widely used application layer protocol for dis-
tributed, collaborative, hypermedia information systems,

which rules the communication between Web clients and
Web servers. It’s used mostly for transfer HTML docu-
ments between nodes. At its basis it is a textual request-
response protocol where clients and servers exchange
messages constituted by an header and an optional body.
Is a stateless protocol, that basically means that each
request-response is independent and neither the client
nor the server has to keep trace of the exchanged
messages. This simplifies the implementation of the
protocol and makes it more scalable. And is designed
to favors the use of intermediaries or proxies, typically
for caching or security purposes. It is appropriate for
devices with relatively high computational power, but
often it can be too demanding in terms of bandwidth and
processing requirements for the constrained devices that
we are considering in the IoT scenario. So, a protocol
called Constrained Application Protocol (CoAP) defined
in the RFC 7252 [2] was developed as a lightweight
counterpart of HTTP in order to simplify integration
with the web but at the same time address the needs
of constrained devices and constrained networks, indeed
those kind of nodes usually carry 8-bit microcontrollers
with very small amounts of ROM/RAM, while con-
strained networks generally suffer of high packet error
rates and have an indicative throughput of 10s kbit/s.
This protocol is used for machine-to-machine (M2M)
communication and, as said before, is quite similar to
HTTP, but with some relevant differences. It uses smaller
and simplified headers, supports asynchronous REST,
publish/subscribe message exchanges, provides support
for multicast, extremely low overhead, and is easy to
implement for constrained environments. The aim of
CoAP is not to indiscriminately compress the HTTP
protocol, but instead to provide a subgroup of REST
in common with HTTP that are optimized for M2M
communications.
In this work, we focus on the IoT communication pro-

1

tocol CoAP; in particular, we overview its architecture,
features and extensions.
The report is structured as follows: in Section II we
describe the communication problems in constrained
networks, in Section III we give an overview of the
CoAP protocol that tackle those problems, and in Sec-
tion IV we describe it’s message format, it’s transmission
and semantic. In Section V we describe the CoAP
methods definitions, caching and proxying. In Section
VI we review some extension and modifications of the
standard CoAP protocol. And finally in Section VII we
make some extra considerations on future developments
and possible improvements.

II. CONSTRAINED DEVICES AND NETWORKS

Edge networks may operate in a huge variety of
environments and conditions that requires a careful
attention on their use. Usually, data flowing throw edge
networks are ultimately destined for the Internet, so they
should be designed with that transition in mind and
therefore it makes some sense to emulate some ideas
in IoT edge network design. The so-called Constrained
networks are characterized as Low-Power and Lossy
Networks (LLNs). Those kinds of networks are used
often in combination with constrained devices that, have
limited processing and powers supply, in Table 1 you
can see a classification of constrained devices. LLNs are
constrained because the cost, the limited nodes capabil-
ities, limited power, limited spectrum, high density and
interference. So they need smaller (compressed) headers
and smaller payloads/packets to keep bit error rates
low and permit media sharing. That’s where lightweight
communication protocols like CoAP comes into play.

III. CONSTRAINED APPLICATION PROTOCOL

(COAP)

The way CoAP interact is very similar to the HTTP
client/server model, but is common to use a node
performing both client and server. A CoAP request
is sent by a client to a server in order to request
an action (specified with a Method Code parameter)
on a particular resource identified by an URI. Then
the server returns a response containing a Response
Code, with the resource or an error message. CoAP
differs from HTTP when dealing with those messages
exchanges because it handles them asynchronously over
the transport layer (in this case the UDP, in section VI
we will describe how CoAP can also work over TCP). 4
types of message are supported by CoAP: Confirmable,
Non-confirmable, Acknowledgement and Reset. Those

messages can transport request or responses based on
their Method Codes or Response Codes. Both request
and responses can be confirmable or non-confirmable.
We can think of CoAP as a two-layer protocol, one
layer for messaging that deal with the transport layer and
with asynchronous messages, and a Request/Response
layer that manages request/response interactions through
Method and Response Codes. You can see this in Fig.
2.

Fig. 2: Abstract Layering of CoAP

Now we are going to explain these 2 layers in depth.

A. Messaging Model

The message layer is the bottom layer of CoAP and it
deals with the exchange of messages over the transport
layer, in the base case the UDP datagrams, but in the
following section we will see how it adapts to TCP.
CoAP uses a binary header of fixed length (4 bytes),
after which a compact binary options and the payload
might follow. Every message in CoAP has a 16-bit
unique ID used for the detection of duplicates and for
reliability, allowing an exchange of up to 250 messages
per second. A message can be sent reliably if its type
is Confirmable (CON), a response will be provided with
the Acknowledgement message (ACK) type carrying the
same Message ID or with the Reset message (RST) if the
recipient is not capable to handle/process the message
that was sent. This process can be seen in Fig. 3.

A non-reliable message can be sent as Non-
confirmable message (NON) that won’t have any ac-
knowledge response, but if the recipient has some trou-
bles processing such message, it can reply with the Reset
message (RST). Even though these kind of messages are

2

Name Data size
(eg. RAM)

Code Size
(eg. ROM) Functionality

Class 0, C0 � 10KB � 100KB
Very constrained devices.
Cannot communicate with the Internet directly.

Class 1, C1 ∼10KB ∼100KB
IP and security capable, cannot easily communicate using full
IP stacks, such as HTTP. May be able to use CoAP over UDP.

Class 2, C2 ∼50KB ∼250KB Support most protocol stacks.

TABLE 1: Classification of constrained devices

Fig. 3: Reliable message transmission

not reliable, they carry a unique ID. This process can be
seen in Fig. 4. CoAP message types are summarized in
Table 2.

Fig. 4: Unreliable message transmission

B. Request/Response Model

The top abstract layer of CoAP is the Request/Re-
sponse layer. Request and responses are carried by the
CoAP messages, that includes a Method Code or a
Response code. A Token is used to pair the response to
the corresponding request. The request is sent by means
of a Confirmable (CON) or a Non-confirmable (NON)
message. If the request is sent through a Confirmable
message, the server replies with an Acknowledgement
(ACK) message with the resource or with an Error Code,
this process is called piggybacked Response and can be
seen in Fig. 5.

If the server is not capable to reply rapidly to the
Confirmable message, it sends back and empty ACK

Fig. 5: Example of GET Requests that receive Piggy-
backed Responses

message, otherwise the client will continue to retransmit
the request. And when it’s ready to respond, it sends a
Confirmable message including the content that must be
confirmed with an ACK message from the client. This
mechanism is called ”separate response” and can be seen
in Fig. 6.

Instead, if the request is sent by using a Non-
confirmable message (NON), the response is sent also
as Non-confirmable that you can see in Fig. 7.

C. Intermediaries, Caching and Resource Discovery

To fulfill request efficiently CoAP offer the caching
of responses. Since we are working on constrained
networks, CoAP also offer the possibility of creating a
proxy, this is due to restrain network traffic, boost perfor-
mances, to access to the data of devices in sleep mode,
and to provide security. Like in HTTP proxying, the
destination IP is the proxy address while the resource’s
URI is inside the request. There is also the possibility
to map CoAP to HTTP and the other way around. This
conversion can be realized by a cross-proxy (a cross-
protocol proxy) that converts Method/Response codes,
options o the corresponding in HTTP. As final note of
this section, since in the context of M2M interactions
Resource Discovery is pretty important, CoAP support
it using the CoRE Link Format [3].

3

Message type Description
Confirmable Reliable message delivery, the recipient is required to confirm with an acknowledgment
Non-Confirmable Not acknowledged, delivery is not guaranteed
Reset Indicates that a message was received, but the receiver is not capable to process/handle it
Acknowledgment Indicates that the message was received and processed correctly

TABLE 2: CoAP message types

Fig. 6: A GET Request with a Separate Response

IV. MESSAGE FORMAT, TRANSMISSION AND

SEMANTIC

In this section we are going to cover the CoAP
message format. Since this protocol was created to
work on constrained networks, it implements compact
messages and, to avoid the fragmentation, it uses the
data section of just one UDP datagram, but it can also
be transported over TCP.

A. Message Format

The message format is composed by a 4-byte header,
followed by a Token value which length is stated in the
TKL header field (0 to 8 bytes), as said before the role
of this token is to match requests with responses. Then a
sequence of 0 or more options in the Type-Length-Value
(TLV) format. An Option might be followed by other
Options, by the end of message, or by the 0xFF (the
Payload Marker) which express the end of the options
section and the start of the payload which may take the

Fig. 7: Request and Response sent by Non-confirmable
Messages

remaining datagram size. This format can be seen in Fig.
9. In particular the header fields are defined as follow:

• Version (Ver): 2-bit unsigned integer.
• Type (T): 2-bit unsigned integer. 0=Confirmable,

1=Non-confirmable, 2=Acknowledgement, or
3=Reset

• Token Length (TKL): 4-bit unsigned integer. Rep-
resents the length of the variable-length Token field
which size can be between 0 and 8 bytes. Lengths
9-15 must be reserved, not sent, and are interpreted
as a message format error.

• Code: 8-bit unsigned integer, divided into a 3-bit
class (most significant bits) and a 5-bit detail (least
significant bits). Class are 0=request, 2=success
response, 4=client error response, or 5=server error
response. For example 0.00=Empty message. In the
case of a request, this field express the Request
Method; while in case of a response, it express a
Response Code.

• Message ID: 16-bit unsigned integer in network
byte order.

The option format requires to each option instance to
specify its Option Number, its Value field length and
the Option Value itself. More than one instance of the
same option can be set by specifying an option delta of
zero. We don’t go further on this concept because its

4

quite complicated and long, we limit ourselves to show
the structure in Fig. 8, for further information, read the
RFC7252 [2].

Fig. 8: CoAP Message Option Format

B. Message Transmission

CoAP messages are used to carry request and re-
sponses between CoAP endpoints, and they are ex-
changed asynchronously. Since UDP is not a reliable
transport protocol, those messages may not arrive in or-
der, they can be missing or can be duplicated. So, CoAP
uses a small mechanism to assure reliability that can
detect duplicates for both Confirmable (CON) and Non-
Confirmable (NON) messages, in particular, implements
for Confirmable messages a basic reliability system
based on stop-and-wait retransmission with exponential
back-off.

Messages and Endpoints: an endpoint, identified by
an IP address plus an UDP port number, is the desti-
nation or the source of a CoAP message. As we said,
there are various types of messages, that can transport a
request, a response or are empty. If a message is empty,
it’s Code field is set to 0.00, the Token Length field
(TKL) to 0 and if there are bytes present in the payload,
they are interpreted as error message.

Messages Transmitted Reliably: to transimt with
reliability the message has to be marked as Confirmable
(CON) in the proper header field. This type of message
always carries a request, a response or a Reset, so a
receiver must return an ACK or reject it. The rejection
of a confirmable message contains the Message ID and
the payload is empty. The sender keeps retransmitting
the message at increasing intervals until it receives
an ACK, a RST or reach the limit of attempts. At
start, the timeout is initialized to a random duration
between ACK_TIMEOUT (default is 2 seconds) and
(ACK_TIMEOUT * ACK_RANDOM_FACTOR (default is

1.5)), and the retransmission counter starts from 0. When
the timeout is reached and the retransmission counter is
less than MAX_RETRANSMIT (default is 4), the message
is sent again, the counter for retransmission is incre-
mented, and the timeout is doubled. This continues until
the counter reach MAX_RETRANSMIT or the sender
receive a RST message.

Messages transmitted without reliability: usually
this are messages that are sent regularly, like data coming
from a sensor where the eventual transmission success
is enough. Those kinds of messages can be sent marking
the proper header field as Non-Confirmable (NON)
message. This kind of messages must not be empty.

C. Message semantic

CoAP uses an analogous request/response model of
HTTP, basically a client might sends several CoAP
requests to a server, which sends back CoAP responses.
But, unlike HTTP, those request and responses are not
sent after a pre-established connection, there are sent
asynchronously.

Requests: consist of a method to be applied to a
specific resource, the resource identifier, the payload
and the internet media type (if any), and the request’s
metadata (optional). The methods supported by CoAP
are GET, POST, PUT, and DELETE. They are safe (only
on retrieval) and idempotent (when invoked multiple
times have the same effect) like for the equivalent HTTP.

Responses: they are matched with the request by a
Token generated by the client. They can be identified
using the Code field in the header. Like for the HTTP
Status Code, in the same way the CoAP Response Code
express the result of trying to satisfy the client request.
The (8-bit) Response Code (Fig. 10) define the class (3-
bit) and the detail (5-bit) of the response. There are 3
main classes of Response Code:

• 2 (Success): indicates that the request has been
successfully received, understood and accepted.

• 4 (Client Error): the request cannot be fulfilled or
contains syntax that the server is not capable to
understand.

• 5 (Server Error): the request is valid but the server
is not able to fulfill it.

V. COAP METHODS, CACHING AND PROXYING

A. Method definitions

Resources are organized with a hierarchy and directed
by a CoAP origin server that listen for CoAP requests
(”coap” or ”coaps”). CoAP URI scheme is defined as

5

Fig. 9: CoAP Message Format

Fig. 10: Response Code structure

follows: coap-URI = ”coap:” ”//” host [”:” port] path-
abempty [”?” query]
Where HOST must not be empty and PORT indicates the
UDP port, if it’s empty the default 5683 is used.
CoAP implements methods, very similar to HTTP, with
which clients can call an action on a specific resource
identified the previously mentioned URIs. A request
with a method that is not supported, returns the 4.05
(Method Not Allowed) response. The methods supported
by CoAP are:

• GET: receives a representation of the resource that
is identified by the URI. If this is possible, the
server returns a 2.03 (Valid) or 2.05 (Content)
Response Code. This method is safe (it MUST NOT
take other action on a resource other than retrieval)
and idempotent.

• POST: results in a creation, update or deletion of a
resource. If a resource is created, the server returns
s 2.01 (Created) Response Code with the URI.
If there is an update of the resource, the server
returns a 2.04 (Changed) Response Code. Instead,
if a resource is deleted, the server returns a 2.02
(Deleted) Response Code. POST is not safe and not
idempotent. Is not idempotent because its effect is
established by the origin server and dependent on
the target resource.

• PUT: result in the creation or update of the resource
specified by the URI given. Its response codes are
the same of POST. PUT is idempotent but not safe.

• DELETE: results in the deletion of the resource
identified by the URI given. If succeed, a 2.02
(Deleted) Response code is returned. DELETE is
idempotent but not safe.

The difference between POST and PUT is that PUT

is generally used to replace the existing content of
a resource, while POST is used to send new data.
Some other IoT frameworks uses the use of CRUD
methods (CREATE, RETRIEVE, UPDATE, DELETE)
to overcome this ambiguity.
A brief summary of CoAP methods can also be seen in
Table 3.

B. Caching

We just briefly note that CoAP endpoints have the
possibility to cache the responses in order to reduce
the time of response and bandwidth usage. The main
purpose of CoAP caching is to reuse a response message
to fulfill a current request that is the same of a past
one. The cacheability of a response is determined by
the Response Code.

C. Proxying

Proxies can serve many different purposes; we can
distinguish them in 3 main types:

• Forward-proxies: CoAP request on such proxies
can be made as Confirmable (CON) or Non-
Confirmable (NON), but the request URI is speci-
fied in the Proxy-Uri Option instead of being split
in URI-Host, URI-Port, URI-Path and URI-Query
Options. If the endpoint is not able to act as a
proxy, it returns a 5.05 (Proxying Not Supported)
response.

• Reverse-Proxies: offer various resources as if they
were its own resources.

• Cross-Proxies: can translate a CoAP request/re-
sponse to a different protocol.

More specifically, a particular kind of cross-proxying is
of interest in IoT when using CoAP, that is the Cross-
Protocol Proxying between CoAP and HTTP, that’s
because CoAP support a limited subset of HTTP func-
tionalities. Only the request/response model of CoAP
is mapped to HTTP. The Confirmable/Non-confirmable
messages model is invisible and has no effect on a proxy
function.

6

Methods Description
GET Retrieves a representation of information corresponding to the specified URI
PUT Requests to update the identified resource be updated with the enclosed representation, or create new
POST Request to process the enclosed representation
DELETE Delete the resource identified by the URI

TABLE 3: CoAP methods

CoAP-HTTP Proxying: enables CoAP clients to
access resources that are hosted on a HTTP server. When
sending a request to the CoAP-HTTP proxy, a CoAP
client has to set the Proxy-URI or Proxy-Scheme Option
to ”http” or ”https”. Since the basic methods of CoAP
are very similar to HTTP, performing a request is not
much different. If the proxy is not able to service the
request with the HTTP URI, it returns a 5.05 (Proxying
Not Supported) response. If the proxy is unable to
get the requested resource by the HTTP server in a
given timeframe, it returns a 5.04 (Gateway Timeout)
response. If the resource is not understood, it returns a
5.02 (Bad Gateway) response. The response payload is
a representation of the resource, and the Content-Format
Option should be set accordingly.

HTTP-CoAP Proxying: enables HTTP clients to
access resources hosted on CoAP servers. When sending
a request to the HTTP-CoAP proxy, an HTTP client
has to set the Request-Line to ”coap” or ”coaps”. If
the proxy is not able to service the request with the
CoAP URI, it returns a 501 (Not Implemented) response.
If the proxy is not able to get the requested resource
by the CoAP server in a given timeframe, it returns a
504 (Gateway Timeout) response. If the resource is not
understood, it returns a 502 (Bad Gateway) response.
Since the methods OPTION, TRACE and CONNECT
are not implemented in CoAP, if those one are called,
the proxy returns a 501 (Not Implemented) error.

VI. COAP ENHANCEMENTS

In this section we are going to review some enhance-
ments and extensions of the standard CoAP protocol. In
particular we explore the CoAP over TCP and CoAP for
streaming.

A. CoAP over TCP

The standard CoAP operates above the User Datagram
Protocol (UDP) accomplishing lightweight messaging.
But the main downsides are that UDP cannot provide
reliability and some networks, especially enterprise net-
works, do not froward UDP packets. For those reasons
and that the demand for the use of TCP in IoT is

increasing, CoAP over TCP was proposed in [4]. TCP
has congestion control and flow control mechanism,
more sophisticated that the one of CoAP over UDP, but
uses a larger packet size, more round trips, and increased
RAM requirements. The main difference between CoAP
over TCP and over UDP is on the message layer, while
the request/response model remains the same.

Messaging Model: since TCP provides reliable trans-
mission, CoAP Confirmable and Acknowledge message
are no longer needed. So, the Message ID field and the
type field in the header are not present anymore, instead,
2 fields that indicate the length of the message (Length
and Extended Length) are present because TCP does not
provide this information.

Message Format: is very similar of the one over UDP,
except for Type, Message ID and Version fields that are
removed as previously said. This format can be seen in
Fig. 11.

Message Transmission: after the TCP connection is
established, the CoAP endpoints send a CSM (Capa-
bilities and Settings Message) as first message of the
connection. This special message initializes the settings
and capabilities of the endpoints, if there are no options
set in this message, the defaults are used. Request and
response are sent asynchronously over the Transport
Connection. So, a client can send multiple requests
without waiting for responses, and those responses can
be returned in any order but in the same connection.
The TCP protocol is bidirectional, this implies that
requests and responses have the capability to be sent
by both endpoints. TCP also support retransmission and
duplication of messages.

B. CoAP for Streaming

In the last years, a variety of streaming application in
IoT are becoming more common. In this paper [5] the
authors explore the usage of the CoAP protocol for this
particular type of flow of data. The conventional CoAP
over UDP or CoAP over TCP protocols can be used
for reliable services as we seen. However, they do not
implement error handling and flow controls suitable to
help the transmission of streaming data at the sender, this

7

Fig. 11: CoAP over TCP Message Format

leads to a degradation of the throughput performances,
especially in sensor wireless lossy networks. For ex-
ample, if in CoAP over UDP a message gets lost, its
retransmission will happen after a timeout, making the
error recovery to increase transmission delays. In CoAP
over TCP the packet can be recovered quickly using the
TCP fast recovery, but this mechanism adds overhead
in the IoT environment. Moreover, the complexity of
TCP is not very suitable for real time streaming in IoT
environment. To overcome these issues, the authors in
[5] proposed a streaming control based on the CoAP,
called CoAP-SC, which extends the CoAP over UDP
protocol that enhance the throughput by adding error
handling and flow controls mechanism. The scheme is
designed by assigning a sequence number (SN) to each
data message, and an ACK number (AN) is returned by
the receiver.

Initialization for CoAP-SC: with a POST message
the sender requests the creation of a new resource,
this request include authentication information, buffer
size and other parameters correlated with the streaming
service. After the creation of the resource, the receiver
returns a 2.01 response message with the URL of this
new resource. Then, the sender sends a GET request
to that URL, and the receiver responds back with a
2.05 response message. All GET and their response
messages contains a sequence number (SN) and ACK
number (AN), where SN is sequentially assigned on each
message sent by the sender, and the AN is set by the
receiver to tell that that message was received correctly.
The AN is cumulative. In the initialization process SN
and AN are set to 0. This initialization process can be
seen in Fig 12.

Error Handling for CoAP-SC: the first message
sent by the sender has SN=1 and AN=0. Every time
the receiver gets a message, it updates its own AN
number to be equal to the highest SN value that has
been received and cumulatively. So, if the receiver is
not getting any data message for a certain amount of
time, it sends an ACK message to tell the sender the

Fig. 12: CoAP-SC Initialization

AN status. In the normal streaming flow, the recipient
will receive a message that has SN = ANsent + 1,
and the next message it will send, will have AN =
SNreceived = ANsent+1. So, if a message gets lost, the
receiver will determine that by checking if this condition
is true: SNreceived − ANsent > 1. When this message
loss is found, the receiver sends an ACK message for
a retransmission request that includes the SN of the
message to be transmitted, and this ACK is retransmitted
until the data lost is correctly received. An example of
this mechanism can be seen in Fig. 13.

Flow Control for CoAP-SC: ACK messages are
used also for flow control, by providing the newest AN
information to the sender, in this way facilitating it to

8

Fig. 13: CoAP-SC Error Handling example

transfer as much data as possible, resulting a throughput
enhancement.

CoAP Option for CoAP-SC: the Option header is
composed by 4bit Option Delta, 4-bit Option Length,
4-byte Sequence number and 4-byte ACK number. This
option format can be seen in Fig. 14.

Fig. 14: CoAP-SC Message Option Format

VII. CONCLUDING REMARKS

In this paper an overview of the CoAP protocol has
given. Since the basic architecture of CoAP may perform
inefficiently in some scenarios like when strong reliabil-
ity is needed and in the case of streaming applications,
we proposed possible solutions for those problems taken
from the most recent literature. In particular for reliabil-
ity, a RFC called ”CoAP over TCP” that as its title says,
modifies CoAP to work on the reliable transport protocol
TCP. While for the streaming scenario, a modification
called CoAP-SC was reviewed, that propose good a
mechanism to deal with errors and flow control that
are crucial in streaming. However, it is quite clear that
this Streaming scheme needs some other modifications
to reduce the packet size to be applied in the IoT
environment.

VIII. ACKNOWLEDGMENT

All images are made by Stefano Ivancich.
This work is presented for the final grade of the ”Internet
of Things and Smart Cities” course, held by prof.
Lorenzo Vangelista at the University of Padova in 2021.

REFERENCES

[1] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer
Protocol Version 2 (HTTP/2).” RFC 7540, May 2015.

[2] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Ap-
plication Protocol (CoAP).” RFC 7252, June 2014.

[3] Z. Shelby, “Constrained RESTful Environments (CoRE) Link
Format.” RFC 6690, Aug. 2012.

[4] C. Bormann, S. Lemay, H. Tschofenig, K. Hartke, B. Silverajan,
and B. Raymor, “CoAP (Constrained Application Protocol) over
TCP, TLS, and WebSockets.” RFC 8323, Feb. 2018.

[5] J.-H. Jung, M. Gohar, and S.-J. Koh, “Coap-based streaming
control for iot applications,” Electronics, vol. 9, no. 8, 2020.

9

	Introduction
	Constrained Devices and Networks
	Constrained Application Protocol (CoAP)
	Messaging Model
	Request/Response Model
	Intermediaries, Caching and Resource Discovery

	Message Format, Transmission and Semantic
	Message Format
	Message Transmission
	Message semantic

	CoAP Methods, Caching and Proxying
	Method definitions
	Caching
	Proxying

	CoAP enhancements
	CoAP over TCP
	CoAP for Streaming

	Concluding Remarks
	Acknowledgment
	References

