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1. Motif Finding 
 

1.1. Basics 
 
DNA: sequenza di lettere ACGT 
Genoma: sequenza di DNA. Sequenza di {𝐴, 𝐶, 𝐺, 𝑇} 

• Uomo: 3 miliardi di caratteri 

• Batteri: 600mila 

• Virus: migliaia 
Gene: sottostringa del DNA 

• codifica (produce) le proteine. 
Proteina: stringa su un alfabeto di 20 caratteri 

• è un mattoncino elementare per costruire la cellula. 

• Amminoacido: singolo carattere della proteina. Composto da una 3-pleta di ACGT 
 
Implanting Motif: si inserisce una stringa in diversi punti in un'altra stringa. 

actgatactagatcatagacatg --AAAGGG---->  actgaAAAGGGtactagatcataAAAGGGgacatg 

• With mutations: si impianta la stringa e si cambiano dei caratteri a caso nella stringa 
impiantata: 

actgaAgAtGGtactagatcataAtAaGGgacatg 
Challenge problem: trovare un Motif in un esempio che ha 

• 𝑡 sequenze 

• ogni sequenza ha un pattern impiantato lungo 𝑛 

• ogni pattern impiantato ha K mutazioni. 

• (N,K)-motif 
 
Supponiamo di conoscere gli indici di inizio del motif: 𝒔 = (𝑠1, … , 𝑠𝑡) 

• Allineo le stringhe in una matrice (Aligment Matrix) 

• Per ogni colonna conto quante volte si ripetono le ATGC (Profile Matrix) 

• Consensus: prendo il massimo di ogni colonna. 
 
 
𝑡: number of DNA sequences 
𝑛: length of each DNA sequence 
DNA: 𝑡 × 𝑛 array 
𝑙: length of the motif (𝑙-mer) 
𝑠𝑖: starting position of an 𝑙-mer in sequence 𝑖 
𝒔 = (𝑠1, … , 𝑠𝑡): array of motif’s starting positions 
 

Score(𝒔, 𝑫𝑵𝑨) = ∑ max
𝑘∈{𝐴,𝑇,𝐶,𝐺}

count(𝑘, 𝑖)𝑙
𝑖=1   

Più grande è lo score più le stringhe sono correlate. 
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1.2. Motif Finding Problem 
 
Motif Finding Problem: Given a set of DNA sequences, find a set of 𝑙-mers, one from each sequence, 
that maximizes the consensus score. 
Input: 

• 𝑡 × 𝑛 matrix of DNA 

• 𝑙 length of the pattern to find 
Output: An array of t starting positions 𝒔 = (𝑠1, … , 𝑠𝑡) maximizing Score(𝒔, 𝑫𝑵𝑨). 
 
Brute force solution: 𝑂(𝑙(𝑛 − 𝑙 + 1)𝑡) = 𝑂(𝑙𝑛𝑡) compute the scores for each possible combination 
of starting positions 𝒔 

 
 
 

1.3. Median String Problem 
 
Hamming Distance 𝑑𝐻(𝒗, 𝒘) =# nucleotide pairs that do not match 
TotalDistance(𝒗, 𝑫𝑵𝑨) = min

𝒔=(𝑠1,…,𝑠𝑡)
𝑑𝐻(𝒗, 𝒔)  

• For each DNA sequence 𝒊, compute all 𝑑𝐻(𝒗, 𝒙) where 𝒙 is an 𝑙-mers with starting position 
𝑠𝑖 

• Find minimum of 𝑑𝐻(𝒗, 𝒙) among all 𝑙-mers in sequence 𝒊 
Median String Problem: Given a set of DNA sequences, find a median string. 
Input: 

• 𝑡 × 𝑛 matrix of DNA 

• 𝑙 length of the pattern to find 
Output: A string 𝒗 of 𝑙 nucleotides that minimizes TotalDistance(𝒗, 𝑫𝑵𝑨) over all strings of that 
length. 
 

Brute force solution: 𝑂(𝑛𝑡4𝑙) compute the scores for each possible combination of 𝒗 
(AAA…,…,TTT…) 
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Motif Finding Problem = Median String Problem: Maximizing Score = minimizing TotalDistance 

 
 

1.4. Search Tree 
Search Tree: is used to implement these two lines: 

• Motif Finding problem:  

• Median String problem:  
And provide 4 moves than can be used to skip fewer promising values: 
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1.5. Branch and Bound 
Same Worst Case but average case is better. 
 
Branch and Bound Motif Search: If we have analyzed the 
first 𝑖 sequences and they provide a very bad score, 
assuming that the rest 𝑡 − 𝑖 lines gives the best score 
possible, but this is less than the previous BestScore 

found, it has no sense to continue searching in that 
branch, so we skip directly to the next branch using ByPass(), otherwise we continue searching 
using NextVertex() 

This saves us from looking at (𝑛– 𝑙 + 1)𝑡−𝑖 leaves. 

         
 

Branch and Bound Median String Search: if the total distance for a prefix is greater than that for 
the best word so far: TotalDistance (prefix, DNA) > BestDistance, there is no sense exploring the 
remaining part of the word. So we skip directly to the next branch using ByPass(), otherwise we 
continue searching using NextVertex() 

 
There are other techniques that uses more constraint on the bounds, and others that don’t find the 
best solution but a good one. Motif Finding Problem 4  
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Planted Motif Search (PMS): 𝑂 (𝑛𝑚 (
𝑙
𝑑

) 3𝑑 𝑙

𝑤
) where 𝑑: hamming distance, 𝑤: word length of 

computer 
Given the sequence 𝑆𝑖 

• 𝐶𝑖 = collection of all possible 𝑙-mers  

• 𝐿𝑖 = From 𝐶𝑖 Generate all patterns at hamming distance 𝑑 

• Sort 𝐿𝑖 

• Eliminate duplicates from 𝐿𝑖 

• Find motif common to all lists 𝐿𝑖 
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2. Randomized Algorithms for Motif Finding 
 
Randomized quicksort: pick the pivot randomly enables to have 𝑂(𝑛 log 𝑛) expected run time. 
 
Las Vegas Algorithms: always produce the correct solution (eg. Randomized quicksort), but they are 
often hard to come by. 
Monte Carlo Algorithms: do not always produce the correct solution. 
 

2.1. Greedy Profile Motif Search 
Let 𝒔 = (𝑠1, … , 𝑠𝑡) be the set of starting positions for 𝑙-mers in our 𝑡 sequences. 
The substrings corresponding to these starting positions will form: 

• 𝑡 × 𝑙 alignment matrix 

• 4 × 𝑙 profile matrix 𝑃, defined in terms of the frequency of letters, not as the count of 
letters. 

Pr(𝒂|𝑷) = ∏ 𝑝𝑎𝑖,𝑖
𝑛
𝑖=1  probability that an 𝑙-mer 𝒂 was created by the Profile 𝑃. 

• If 𝒂 is very similar to the consensus string of 𝑃 then Pr(𝒂|𝑷) is high 

• If 𝒂 is very different to the consensus string of 𝑃 then Pr(𝒂|𝑷) is low 

 
 
𝑷-Most Probable 𝒍-mer in a single sequence: is the 𝑙-mer in that sequence which has the highest 
probability of being created from the profile 𝑃. 

 
 

 
To avoid many entries with prob Pr(𝒂|𝑷) = 0, there exist techniques to equate zero to a very small 
number so that one zero does not make the entire probability of a string zero. 



 

8 
 

𝑷-Most Probable 𝒍-mer in Many Sequences: 

• Find the 𝑃-most probable 𝑙-mer in each of the sequences. 

• Align those 𝑙-mers in a matrix. 

• Calculate a new Profile matrix 

• Compare it to the old Profile matrix. If the score had 
increased it ok, otherwise we are in the wrong direction. 

 
Greedy Profile Motif Search: 

• Select random starting positions. 

• Create a profile 𝑷 from the substrings at these starting positions. 

• Find the 𝑷-most probable 𝑙-mer 𝒂 in each sequence and change the starting position to the 
starting position of 𝒂. 

• Compute a new profile based on the new starting positions after each iteration and proceed 
until we cannot increase the score anymore. 

 
Since we choose starting positions randomly, there is little chance that our guess will be close to an 
optimal motif, meaning it will take a very long time to find the optimal motif. It is unlikely that the 
random starting positions will lead us to the correct solution at all. In practice, this algorithm is run 
many times with the hope that random starting positions will be close to the optimum solution 
simply by chance. 
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2.2. Gibbs Sampling 
Greedy Profile Motif Search changes starting positions (𝑠1, … , 𝑠𝑡) between every iteration, and may 
change as many as all 𝑡 positions in a single iteration. Gibbs sampling is an iterative procedure that 
at each iteration discards one 𝑙-mer from the alignment and replaces it with a new one. In other 
words, it changes at most one position in 𝒔 in each iteration and thus moves with more caution in 
the space of all starting positions. 
 
Gibbs Sampling: 

• Randomly select starting positions 𝒔 = (𝑠1, … , 𝑠𝑡) in DNA and form the set of 𝑙-mers starting 
at these positions. 

• Randomly choose one of 𝑡 sequences. 

• Create a profile P from the 𝑙-mers in the remaining 𝑡 − 1 sequences. 

• For each position in the removed sequence, calculate the probability that the 𝑙-mer starting 
at this position is generated by profile 𝑷  

• Choose the new starting position for the removed sequence randomly, according to the 
probabilities calculated in step 4. 

• Repeat steps 2-5 until there is no improvement. 

 

 

 
 
Gibbs sampling needs to be modified when applied to samples with unequal distributions of 
nucleotides. 
Gibbs sampling often converges to locally optimal motifs rather than globally optimal motifs. 
Needs to be run with many randomly chosen seeds to achieve good results. 
 
 
  



 

10 
 

2.3. Random Projections 
We randomly select a subset of positions in the pattern creating a projection of the pattern. 
Search for that projection in a hope that the selected positions are not affected by mutations in 
most instances of the motif. 
 
Projection: 

• Choose 𝑘 positions in string of length 𝑙 

• Concatenate nucleotides at chosen 𝑘 positions to form 𝑘-tuple. 
This can be viewed as a projection of 𝑙-dimensional space onto 𝑘-dimensional subspace. 

 
 
Random Projections Algorithm: (single iteration) 

• Select 𝑘 out of 𝑙 positions uniformly at random. 

• For each 𝑙-tuple 𝑥 in input sequences, hash it into a bucket labeled by ℎ(𝑥) (the label is 
composed by the letter at 𝑘 selected positions). 

 
• For each bucket ℎ containing more than 𝑠 sequences (enriched buckets), extract a motif 

using a local refinement algorithm. 
For example, using Gibbs Sampler: form a profile 𝑷(ℎ), then use 𝑷(ℎ) as starting point to 
obtain refined profile 𝑷∗. 

 
• Candidate motif is best found by selecting the best motif among refinements of all enriched 

buckets. 
Some projections will fail to detect motifs but if we try many of them (run multiple times the 
algorithm) the probability that one of the buckets fills in is increasing. 
 
Random Projection is a procedure for finding good starting points: every enriched bucket is a 
potential starting point. Feeding these starting points into existing algorithms (like Gibbs sampler) 
provides good local search in vicinity of every starting point. 
 
Choosing Projection Size 𝑘: 

• small enough so that several motif instances hash to the same bucket. 

• large enough to avoid contamination by spurious 𝑙-mers. 
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3. Dynamic Programming 
 
Computing a similarity score between two genes tells how likely it is that they have similar functions. 
Dynamic programming is a technique for revealing similarities between genes. 
 

3.1. Edit Distance 
Alignment: 2 ∗ 𝑘 matrix where 𝑘 > 𝑚, 𝑛 
Same characters are aligned, then insert and delete some 
characters. 

 
 

Longest Common Subsequence (LCS): is the sequence of positions in 𝒗: 1 ≤ 𝑖1 < ⋯ < 𝑖𝑡 ≤ 𝑚 and 
𝒘: 1 ≤ 𝑗1 < ⋯ < 𝑗𝑡 ≤ 𝑛 such that the 𝑖𝑡-th character of 𝒗 = 𝑗𝑡-th character of 𝒘 and 𝑡 is maximal. 
Every common subsequence is a path in a 2-D Manhattan grid: 

• diagonals are alignable characters (matches) 

• others identify insertions/deletions 
Solution: find the path that maximize the number of diagonals (we want to maximize the matches). 

 
𝑂(𝑛𝑚) 

 
 
Edit distance 𝑑(𝒗, 𝒘) = MIN number of elementary operations (insertions, deletions, and 
substitutions) to transform 𝒗 in 𝒘. 
Is calculated according to the initial conditions 𝑑𝑖,0 = 𝑖, 𝑑0,𝑗 = 𝑗 for all 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚 and 

the following recurrence: 
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3.2. Sequence Alignment 
3.2.1. Global Alignment 
LCS allows only insertions and deletions (no mismatches), awards 1 for matches and does not 
penalize indels. 
Simplest scoring schema:  

• +1: match premium 

• 𝜇: mismatch penalty 

• 𝜎: indel penalty 
 
Global Alignment: Find the best alignment between two strings under a given scoring matrix. 𝑂(𝑛2) 

• Input: Strings 𝒗, 𝒘 and a scoring matrix 𝜹 

• Output: An alignment of 𝒗 and 𝒘 whose score is maximal among all possible alignments of 
𝒗 and 𝒘. 

 
Score = #matches − 𝜇 ∗ #mismatches − 𝜎 ∗ #indels 
LCS problem is the Global Alignment problem with the parameters 𝜇 = 0, 𝜎 = 0. 
 
Scoring Matrices 
Scoring techniques: 

• Identity: matches/sequence size 

• Conservation: combine matches, mismatches and indels 
Scoring matrix 𝜹 size= (|Σ| + 1) × (|Σ| + 1) (where +1 is for the gap character “-“) 
Scoring matrices are created based on biological evidence. Alignments can be thought of as two 
sequences that differ due to mutations. Some of these mutations have little effect on the protein’s 
function, therefore some penalties in δ will be less harsh than others. 
Common Matrices for protein sequence comparison: 

• point accepted mutations (PAM): 1 PAM = 1% of all amino acid positions are changed. 

• Block substitution (BLOSUM): Scores derived from observations of the frequencies of 
substitutions in blocks of local alignments in related proteins. 

 
Local vs. Global Alignment 

• Global: tries to find the longest path between vertices (0,0) and (𝑛, 𝑚) in the edit graph. 

• Local: tries to find the longest path among paths between arbitrary vertices (𝑖, 𝑗) and (𝑖′, 𝑗′) 
in the edit graph. 

In the edit graph with negatively scored edges, Local Alignment may score higher than Global 
Alignment 
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3.2.2. Local Alignment 
Local Alignment: Find the best local alignment between two strings. 𝑂(𝑛4) 

• Input: Strings v, w and scoring matrix δ 

• Output: Alignment of substrings of v and w whose alignment score is maximum among all 
possible alignment of all possible substrings. 

 
Solution: with dynamic programming 𝑂(𝑛2) 
Imagine that exist another arc, with 0 weight, that from the origin go to every other node. So we 
can go from the origin to any other vertex without penalties. 

 

 
 
K-best local alignments: Several local alignments might have biological significance 
Output best k non overlapping alignments: 

• A particular local alignment can be specified by the edges that it uses during the traceback. 

• Two local alignments are said to be disjoint if they do not use any of the same edges. 
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3.2.3. Alignment with Affine Gap Penalties 
In nature, a series of 𝑘 indels often come as a single event 
rather than a series of k single nucleotide events. So 
applying the penalty 𝜎 k consequent times, it’s too severe. 

 
Gap: contiguous sequence of spaces in one of the rows 
Score for a gap of length 𝑥 is: −(𝜌 + 𝜎𝑥) 
where 𝜌 > 0 is the penalty for introducing a gap (gap opening penalty) 
𝜌 will be large relative to 𝜎 (gap extension penalty) because you do not want to add too much of a 
penalty for extending the gap. 
 
To reflect affine gap penalties, we have to add “long” horizontal and vertical edges to the edit graph. 
Each such edge of length 𝑥 should have weight −(𝜌 + 𝜎𝑥) 

 
So we use 3 Manhattan grids: each has arcs only in 1 direction 

• The main level is for diagonal edges. Extends matches and mismatches. 

• The lower level is for horizontal edges. Creates/extends gaps in sequence v. 

• The upper level is for vertical edges. Creates/extends gaps in the sequence w. 
Jumping penalty from the main level to either the upper level or the lower level −𝜌 − 𝜎 
Gap extension penalty for each continuation on a level other than the main level −𝜎 
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3.3. Multiple Alignment 
Alignment between more than 2 sequences. 
Alignment of 𝑘 sequences is represented as a 𝑘-row matrix 
The path is 𝑘-dimension Manhattan grid space. 

Run time: 𝑂(2𝑘𝑛𝑘) (𝑘 sequences each of length 𝑛) 

 
 

 
 
Run time for the exact solution is impractical. 
 
 
Every multiple alignment induces pairwise alignments. 
Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments. Not always possible. 
From an optimal multiple alignment, we can infer pairwise alignments between all pairs of 
sequences, but they are not necessarily optimal 
It is difficult to infer a ``good” multiple alignment from optimal pairwise alignments between all 
sequences 
 
Aligning alignments: do it by aligning the profiles. 
 
Greedy Approach: Choose most similar pair of strings and combine into a profile, in this way 
reducing alignment of k sequences to an alignment of k-1 sequences/profiles. Repeat 
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Progressive alignment: is a variation of greedy algorithm with a somewhat more intelligent strategy 
for choosing the order of alignments. 
Works well for close sequences, but deteriorates for distant sequences. 

• Gaps in consensus string are permanent 

• Use profiles to compare sequences 
 
Star approach: Given k sequences 

• Pick one sequence 𝑥𝑐  as the center 

• For each 𝑥𝑖 ≠ 𝑥𝑐  determine an optimal alignment between 𝑥𝑖 and 𝑥𝑐  

• Merge pairwise alignments 

• Return: multiple alignment resulting from aggregate 
Two possible approaches: 

• Try each sequence as a center, return the best multiple alignment 

• Compute all pairwise alignments and select the string 𝑥𝑐  that maximizes: ∑ 𝑠𝑖𝑚 (𝑥𝑖 , 𝑥𝑐)𝑥𝑖≠𝑥𝑐
 

 
Tree approach: organize multiple sequence alignment using a guide tree 

• Leaves represent sequences 

• Internal nodes represent alignments 

• Determine alignments from the bottom of the tree upward 

• Return the multiple alignment represented by the root of the tree 
 
Scoring: techniques to evaluate the quality of a multiple alignment 
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• Number of matches (multiple longest common subsequence score): A column is a “match” 
if all the letters in the column are the same. Only good for very similar sequences. 

• Entropy score: idea: try to minimize the entropy of each column. Columns that can be 
described using few bits are good. 
Entropy for a multiple alignment is the sum of entropies of its columns: 

 

  
• Sum of pairs (SP Score) 

o From a multiple alignment, we can infer pairwise alignments between all sequences, 
but they are not necessarily optimal. A 3D alignment can be projected onto the 2D 
plane to represent an alignment between a pair of sequences. 

o 𝑠∗(𝑎𝑖 , 𝑎𝑗): score of this suboptimal pairwise alignment 

o SP-Score: 𝑠(𝑎1, … , 𝑎𝑘) = ∑ 𝑠∗(𝑎𝑖, 𝑎𝑗)𝑖,𝑗  

 
 
Alignment as a Graph: 
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4. Divide & Conquer Algorithms 
 
Divide problem into sub problems 
Conquer by solving sub problems recursively. If the sub problems are small enough, solve them 
directly. 
Combine the solutions of sub problems into a solution of the original problem (tricky part) 
 
Divide and Conquer Approach to LCS: 

 
 
To find the middle vertex ………………………………… 
 
 

Block Alignment & Four Russians Speedup 
 
Partition the nxn grid into blocks of size txt 

each sequence is sectioned off into chunks, each of length 𝑡 
Sequence 𝒖 = 𝑢1 … 𝑢𝑛 becomes |𝑢1 … 𝑢𝑡| |𝑢𝑡+1 … 𝑢2𝑡| … |𝑢𝑛−𝑡+1 … 𝑢𝑛| 
Sequence 𝒗 = 𝑣1 … 𝑣𝑛 becomes |𝑣1 … 𝑣𝑡| |𝑣𝑡+1 … 𝑣2𝑡| … |𝑣𝑛−𝑡+1 … 𝑣𝑛| 

 
 
Block alignment of sequences 𝒖 and 𝒗: 

• An entire block in u is aligned with an entire block in v 

• An entire block is inserted 

• An entire block is deleted 
Block path: a path that traverses every txt square through its corners 
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Block Alignment Problem: Find the longest block path through an edit graph. 

• Input: Two sequences, 𝒖 and 𝒗 partitioned into blocks of size 𝑡. 

• Output: The block alignment of u and v with the maximum score (i.e., the longest block path 
through the edit graph). 

Solution: compute alignment score ß𝑖,𝑗 for each pair of blocks |𝑢(𝑖−1)∗𝑡+1 … 𝑢𝑖∗𝑡| and 

|𝑣(𝑗−1)∗𝑡+1 … 𝑣𝑗∗𝑡| 

For each block pair, solve a mini alignment problem of size txt 

 
Optimal block alignment score between the first 𝑖 blocks of 𝒖 and first 𝑗 blocks of 𝒗: 𝑂(𝑛2) 

 
 
Four Russians Technique: speeds up the block alignment by using a lookup table Score to eliminate 
the time of computing ß𝑖,𝑗. 

Lookup table: stores the precomputed the scores ß𝑖,𝑗 for all possible pair of sequences. Its size is 

4𝑡 × 4𝑡, if we set 𝑡 = log 𝑛 /4 then the size is 𝑛 

 
Final time complexity: 𝑂(𝑛2/ log 𝑛) 
 
Problem: In block alignment, we only care about the corners of the blocks. In LCS, we care about all 
points on the edges of the blocks, because those are points that the path can traverse. 
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5. Greedy Algorithms and Genome Rearrangements 
 
Reversal 𝑝(𝑖, 𝑗) reverses (flips) the elements from 𝑖 to 𝑗 in 𝜋 
Gene order is represented by a permutation 𝜋 

        
 
Reversal Distance Problem: Given two permutations, find the shortest series of reversals that 
transforms one into another. 

• Input: Permutations 𝜋 and 𝜎 

• Output: A series of reversals 𝜌1, … , 𝜌𝑡  transforming 𝜋 into 𝜎 such that 𝑡 is minimum 
 
Sorting by Reversals Problem: Given a permutation, find a shortest series of reversals that 
transforms it into the identity permutation (1 2 … n) 

• Input: Permutation 𝝅 

• Output: A series of reversals 𝜌1, … , 𝜌𝑡  transforming 𝜋 into the identity permutation such that 
𝑡 is minimum. 

 
 
Pancake Flipping Problem: Given a stack of 𝑛 pancakes, what is the minimum number of flips to 
rearrange them into perfect stack? 

• Input: Permutation 𝝅 

• Output: A series of prefix reversals 𝜌1, … , 𝜌𝑡  transforming 𝝅 into the identity permutation 
such that 𝑡 is minimum 

 
Not optimal. 

 
Approximation ratio: 𝐴(𝜋)/𝑂𝑃𝑇(𝜋)  

• 𝐴(𝜋) solution produced by algorithm 𝐴 

• 𝑂𝑃𝑇(𝜋) optimal solution of the problem 
Minimization algorithm: max

|𝜋|=𝑛
𝐴(𝜋)/𝑂𝑃𝑇(𝜋) 
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Adjacency: a pair of adjacent elements that are consecutive. Eg. (2,1) or (3,4) 
Breakpoint: a pair of adjacent elements that are not consecutive. Eg. (6,2) or (1,3) 
𝑏(𝜋): # of breakpoints 

 
 
Extending Permutations: put 𝜋0 = 0 and 𝜋𝑛+1 = 𝑛 + 1 at the beginning and at the end. 

 
 
Each reversal eliminates at most 2 breakpoints. 
This implies: reversal distance ≥ #breakpoints / 2 
 
Sorting by Reversals: A Better Greedy Algorithm 

 
 
Strip: an interval between two consecutive breakpoints in a permutation 

• Decreasing strip: strip of elements in decreasing order (e.g. 6 5 and 3 2). 

• A single element strip is considered decreasing with exception of the strips with 0 and n+1 

 
Theorem 1: If permutation 𝜋 contains at least one decreasing strip, then there exists a reversal 𝜌 
which decreases the number of breakpoints. 
Best reversal: 

• Choose decreasing strip with the smallest element 𝑘 in 𝜋 (k = 2 in this case) 

• Find 𝑘 − 1 in the permutation 

• Reverse the segment between 𝑘 and 𝑘 − 1 

 
If there is no decreasing strip, create one by reversing a increasing strip. 
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6. Molecular Evolution 
 
Evolutionary Tree: 

• leaves represent existing species 

• internal vertices represent ancestors 

• root represents the oldest evolutionary ancestor 
 
Tree distance between 𝑖 and 𝑗 𝑑𝑖𝑗(𝑇): length of a path between leaves 𝑖 and 𝑗 

Distance Matrix 𝐷 𝑛 × 𝑛: each cell is the edit distance between a gene (DNA string) in species 𝑖 and 
species 𝑗, where the gene of interest is sequenced for all 𝑛 species. 
 
Given 𝑛 species, Evolution of these genes is described by a tree that we don’t know. 
We need an algorithm to construct a tree that best fits the distance matrix 𝐷𝑖𝑗 

Fitting means: 𝐷𝑖𝑗 = 𝑑𝑖𝑗(𝑇) 

 
Reconstructing a 3 Leaved Tree: given the 3x3 matrix 

  ====>  
Trees with >3 Leaves: 

• 𝑂(𝑛2) equations 

• 2𝑛 − 3 variables (edges) 

• We have more constrains than variables => not always possible to solve for 𝑛 > 3 

• The matrix must be ADDITIVE 
 
Distance Based Phylogeny Problem: Reconstruct an evolutionary tree from a distance matrix 

• Input: 𝑛 × 𝑛 distance matrix 𝐷𝑖𝑗 

• Output: weighted tree 𝑇 with 𝑛 leaves fitting 𝐷 
If 𝐷 is additive, this problem has a solution and there is a simple algorithm to solve it. 
 
Using Neighboring Leaves to Construct the Tree 

• Find neighboring leaves 𝑖 and 𝑗 with parent 𝑘 

• Remove the rows and columns of 𝑖 and 𝑗 

• Add a new row and column corresponding to 𝑘, where the distance from 𝑘 to any other leaf 

𝑚 can be computed as: 𝐷𝑘𝑚 = (𝐷𝑖𝑚 + 𝐷𝑗𝑚 − 𝐷𝑖𝑗)/2 

 
Neighbor Joining Algorithm: Finds a pair of leaves that are close to each other but far from other 
leaves: implicitly finds a pair of neighboring leaves. 
Works well for additive and other non-additive matrices. 
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6.1. Additive Phylogeny Algorithm 
 
Degenerate Triples: 3 distinct elements 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛 where 𝐷𝑖𝑗 + 𝐷𝑗𝑘 = 𝐷𝑖𝑘 

𝑖, 𝑗, 𝑘 lies on the evolutionary path from 𝑖 to 𝑘 (or is attached to this path by an edge of length 0). 
If distance matrix 𝐷 

• has a degenerate triple 𝑖, 𝑗, 𝑘 then 𝑗 can be “removed” from 𝐷 thus reducing the size of the 
problem. 

• does not have a degenerate triple 𝑖, 𝑗, 𝑘 then we “create” a degenerative triple in 𝐷 by 
shortening all hanging edges by the same amount 𝛿 (so that all pair wise distances in the 
matrix are reduced by 2𝛿) until a degenerate triple is found. 

• The attachment point for 𝑗 can be recovered in the reverse transformations by saving 𝐷𝑖𝑗 for 

each collapsed leaf. 

 
Additive Phylogeny Algorithm 

 
 
 
The Four Point Condition: efficient additivity check. 
Let 1 ≤ 𝑖, 𝑗, 𝑘, 𝑙 ≤ 𝑛 be 4 distinct leaves in a tree. 
The condition is satisfied If 2 of the following sums 
are the same and the third is smaller: 

• 𝐷𝑖𝑗 + 𝐷𝑘𝑙 

• 𝐷𝑖𝑘 + 𝐷𝑗𝑙 

• 𝐷𝑖𝑙 + 𝐷𝑗𝑘 

An 𝑛 × 𝑛 matrix 𝐷 is additive if and only if the four-point condition holds for every quartet 1 ≤
𝑖, 𝑗, 𝑘, 𝑙 ≤ 𝑛 
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6.2. NOT Additive distance matrix 
 
Least Squares Distance Phylogeny Problem: If the distance matrix 𝐷 is NOT additive, then we look 

for a tree 𝑇 that approximates 𝐷 the best. NP-HARD. ∑ (𝑑𝑖𝑗(𝑇) − 𝐷𝑖𝑗)
2

𝑖,𝑗  

 
UPGMA is a clustering algorithm that: 

• computes the distance between clusters using average pairwise distance 

• assigns a height to every vertex in the tree, effectively assuming the presence of a molecular 
clock and dating every vertex. 

• Problem: produces an ultrametric tree: the distance from the root to any leaf is the same. 
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6.3. Weighted Small Parsimony Problem 
Alignment Matrix vs. Distance Matrix 

 
 
Character Based Tree Reconstruction: determine what character strings at internal nodes would 
best explain the character strings for the n observed species 
Use the nxm alignment matrix (n = # species, m = #characters) directly instead of using distance 
matrix. 
 
Characters may be nucleotides. Others may be the # of eyes or legs or the shape of a beak or a fin. 
 
Parsimony score of a tree: sum of the lengths (weights) of the edges. Where the length of an edge 
in the tree is the Hamming distance. 
Assumes observed character differences resulted from the fewest possible mutations. 
Seeks the tree that yields lowest possible parsimony score sum of cost of all mutations found in the 
tree. 

 
 
Small Parsimony Problem 

• Input: Tree 𝑇 with each leaf labeled by an m character string. 

• Output: Labeling of internal vertices of the tree 𝑇 minimizing the parsimony score. 
Assume that every leaf is labeled by a single character, because the characters in the string are 
independent. 
 
Weighted Small Parsimony Problem: Input includes a 𝑘 × 𝑘 scoring matrix describing the cost of 
transformation of each of k states into another one. 

• Input: Tree 𝑇 with each leaf labeled by elements of a 𝑘 letter alphabet and a 𝑘 × 𝑘 scoring 
matrix 𝛿𝑖𝑗 

• Output: Labeling of internal vertices of the tree 𝑇 minimizing the weighted parsimony score. 
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6.3.1. Sankoff’s Algorithm 
The score at each vertex is based on scores of its children:𝑠𝑡(𝑝𝑎𝑟𝑒𝑛𝑡) = min

𝑖
{𝑠𝑖(𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑) +

𝛿𝑖,𝑡} + min
𝑗

{𝑠𝑗(𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑) + 𝛿𝑗,𝑡} 

 
Begin at leaves: 

• If leaf has the character in question, score is 0 

• Else, score is ∞ 
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After the scores at root vertex are computed the Sankoff algorithm moves down the tree and assign 
each vertex with optimal character. 

 
 

6.3.2. Fitch’s Algorithm 
Step 1) Assigns a set of letters to every vertex in the tree. 
The father is: 

• If the two children’s sets of character overlap, it’s the common set of them 

• If not, it’s the union set of them. 
Step 2) Assign labels to each vertex, traversing the tree from root to leaves 
Assign root arbitrarily from its set of letters 
For all other vertices: 

• If its parent’s label is in its set of letters, assign it its parent’s label 

• Else, choose an arbitrary letter from its set as its label 

 
 
𝑂(𝑛𝑘)  
The Sankoff algorithm gives the same set of optimal labels as the Fitch algorithm 
 

6.3.3. Large Parsimony Problem 
Input: An 𝑛 × 𝑚 matrix M describing 𝑛 species, each represented by an 𝑚 character string 
Output: A tree 𝑇 with 𝑛 leaves labeled by the 𝑛 rows of matrix 𝑀, and a labeling of the internal 
vertices such that the parsimony score is minimized over all possible trees and all possible labelings 
of internal vertices 
 
Search space is huge, NP-complete, it’s solvable for 𝑛 < 10 
 
Some greedy techniques based on Tree: 

• Nearest Neighbor Interchange 

• Subtree Pruning and Recrafting 

• Tree Bisection and Reconnection 
 
Problems with Parsimony: reliance on one method provides incomplete picture 
When different methods all give same result, more likely that the result is correct 
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7. DNA Assembly 
 
It’s not possible to read the DNA in one-shot. But we read many fragments called reads. 

 
 
De-novo assembly: do everything from scratch 

• Easier with long reads 

• Needs good coverage (~10x min) 

• Generally, produces fragmented assemblies (i.e., contigs) 

• Only option when you don’t have a closely related (and correctly assembled) reference 
genome 

Comparative assembly: we have a “reference” (related) genome. 

• Easier 

• Basic idea: 
o Take the reads and map them against the reference genome allowing for some small 

mismatches (Alignment) 
o Collect all overlapping reads, perform multiple sequence alignment, and produce 

consensus sequence 

• Short reads can map to several places 

• Needs close reference genome 

• Repeats are problematic 

• Can be highly accurate even when reads have errors 
 
Simplest scenario: 

• Reads have no errors 

• Reads are long enough that each of them appears exactly once in the genome 

• Each read has the same orientation 

• CSP 
Common Superstring Problem (CSP): Given a set 𝑅 of strings find a string 𝑆 such that 𝑟 is a substring 
of 𝑆 for all 𝑟 in 𝑅 
Trivial solution: concatenate all the strings in 𝑅. 
 
Overlap Graph 

• Each read is a node 

• directed edge from 𝑢 to 𝑣 if the two reads have sufficient overlap 

• Objective: Find a Hamiltonian Path (for linear genomes) or a Hamiltonian Circuit (for circular 
genomes) 
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Hamiltonian Path Approach 

• NP-hard 

• produce multiple solutions 

• Tends to produce fragmented assemblies 

 
Identifying overlaps: Computing all-pairs overlap is computationally expensive, especially for NGS 
datasets, which can have millions of short reads. 
 
𝒌-mer Graph (de Bruijn graph): 

• Vertices are 𝑘-mers (substrings of length 𝑘) that appear in some read 

• edges are defined by overlap of 𝑘 − 1 nucleotides 

• number of nodes is 𝑂(4𝑘) 

• Does not require all-pairs overlap calculation 

• loss of information about reads can lead to incorrect assemblies 

• produces fragmented assemblies 

• assemblies are constructed by finding Eulerian paths 
Eulerian path is a path going through each of the edge exactly once. 
If the 𝑘-mer set comes from a sequence and each 𝑘-mer appears exactly once in the sequence, then 
the de Bruijn graph has a Eulerian path. 
Sequencing errors and repeats may lead to non Eulerian graphs or to graphs with multiple Eulerian 
paths. To overcome this problem, we use pruning. 
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Using de Bruijn Graphs: 

• Given: set of 𝑘-mers from a DNA sequence 

• Algorithm: 
o Construct the de Bruijn graph 
o Find an Eulerian path in the graph 
o The path defines a sequence with the same set of 𝑘-mers as the original, but this may 

not be the original DNA sequence 

 
Velvet: tool to constrict the 𝑘-mer graph 

• For each 𝑘-mer, create an hash value for it and its reverse complement 

• In a Hash Table store the hash values and the list of all reads that contains either it or its 
reverse complement 

• Construct the de Bruijn graph 

• Collapse linear paths into a single node 

• Remove tips chains of nodes disconnected to one end 

• Remove bubbles which are two paths starting and ending on the same node (only one is 
hold) 

• Finally find an Eulerian path 
Main problem with Velvet is the huge amount of memory 
Abyss distributed the hash tables to several computational nodes in order to “evenly” spread the 
memory requirements. 
 
Handling repeats: 

• Repeat detection 
o pre-assembly: find fragments that belong to repeats 

▪ statistically (most existing assemblers 
▪ repeat database (RepeatMasker) 

o during assembly: detect "tangles" indicative of repeats 
o post-assembly: find repetitive regions and potential misassemblies. 

▪ Reputer, RepeatMasker 
▪ "unhappy" mate-pairs (too close, too far, mis-oriented) 

• Repeat resolution 
o find DNA fragments belonging to the repeat 
o determine correct tiling across the repeat 

 
Evaluate assembly quality with Contig N50 is the length of the smallest contig in the set that 
contains the fewest (largest) contigs whose combined length represents at least 50% of the 
assembly 
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8. Pattern Matching 
 

8.1. Genomic Repeats 

Genomic Repeats: string that repeats with mutations  
 
𝒍 −mer Repeats 

• Short repeats are easy to find (e.g., hashing) 

• Long repeats are difficult to find 
o Find exact repeats of short 𝑙-mers (𝑙 is usually 10 to 13) 
o Use 𝑙-mer repeats to potentially extend into longer, maximal repeats 

 
 
Hashing DNA sequences:  

• Each 𝑙 −mer can be translated into a binary string (A, T, C, G can be represented as 00, 01, 
10, 11) 

• After assigning a unique integer per 𝑙-mer it is easy to get all start locations of each 𝑙-mer in 
a genome 

To find repeats in a genome: 

• For all 𝑙-mers in the genome, note the start position and the sequence 

• Generate a hash table index for each unique 𝑙-mer sequence 

• In each index of the hash table, store all genome start locations of the 𝑙-mer which generated 
that index 

• Extend 𝑙-mer repeats to maximal repeats 
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8.2. Pattern Matching  
Pattern Matching Problem: Find all occurrences of a pattern in a text 

• Input: Pattern 𝒑 = 𝑝1 … 𝑝𝑛 and text 𝒕 = 𝑡1 … 𝑡𝑚 

• Output: All positions 1 ≤ 𝑖 ≤ (𝑚 − 𝑛 + 1) such that the n-letter substring of 𝒕 starting at 
𝑖 matches 𝒑 

Brute force: 𝑂(𝑛𝑚) 
Suffix trees: 𝑂(𝑚) 
 
Keyword Tree: 

• Stores a set of keywords in a rooted labeled tree 

• Each edge labeled with a letter from an alphabet 

• Any two edges coming out of the same vertex have 
distinct labels 

• Every keyword stored can be spelled on a path from 
root to some leaf 

 
Multiple Pattern Matching Problem: Given a set of patterns and a text, find all occurrences of any 
of patterns in text 

• Input: 𝑘 patterns 𝒑𝟏, … , 𝒑𝒌 and text 𝒕 = 𝑡1 … 𝑡𝑚 

• Output: All positions 1 ≤ 𝑖 ≤ 𝑚 where substring of 𝒕 starting at 𝑖 matches 𝒑𝒋 for 1 ≤ 𝑗 ≤ 𝑘 

Keyword Tree Approach 

• Build keyword tree in 𝑂(𝑁) time; 𝑁 is total length of all 
patterns 

• With naive threading: 𝑂(𝑁 + 𝑛𝑚) 

• Aho Corasick algorithm: 𝑂(𝑁 + 𝑚) 
To match patterns in a text using a keyword tree: 

• Build keyword tree of patterns 

• Thread” the text through the keyword tree 

• Threading is “complete” when we reach a leaf in the 
keyword tree 

• When threading is “complete,” we’ve found a pattern in 
the text 
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Suffix Trees=Collapsed Keyword Trees 

• except edges that form paths are collapsed 

• Each edge is labeled with a substring of a text 

• All internal edges have at least two outgoing 
edges 

• Leaves labeled by the index of the pattern. 

• Suffix trees of a text is constructed for all its 
suffixes 

• Builds in 𝑂(𝑚) time for text of length m 
To find any pattern of length 𝑛 in a text: 

• Build suffix tree for text 

• Thread the pattern through the suffix tree 

• Can find pattern in text in 𝑂(𝑛) 
𝑂(𝑛 + 𝑚 + 𝑛𝑜𝑐𝑐) time for “Pattern Matching Problem” 
 
Generalized Suffix Tree: be used to represent all suffixes of a set of strings 
Construction: Apply ordinary suffix tree construction to a concatenation of the strings: 𝐶 =
𝑆1$1 … 𝑆𝑘$𝑘 

• $𝑖 is a unique end-marker for each 𝑆𝑗 => each leaf corresponds to a start position of 𝐶 

• These can be converted to pairs (𝑖, 𝑗), where 𝑖 identifies the string, and 𝑗 is the position in 
string 𝑆; 

• Total time is 𝑂(|𝐶|) 

• Synthetic that span boundaries of original strings can be eliminated 

 
 
Longest common substrings 
For each node 𝑣 of a suffix tree, define the string depth of 𝑣 to be the length of the path label 𝐿(𝑣) 
of 𝑣 
Finding maximal substrings common to strings S1 and S2 

• Build a generalized suffix tree for S1 and S2 

• Mark each internal node 𝑣 by 1 (resp. 2) if the subtree below v contains a leaf for a suffix of 
S1 (resp.S2) 

• Traverse the tree to find nodes marked by both 1 and 2, and choose any 𝑢 of them with a 
maximal string depth => 𝐿(𝑢) is a maximal common substring 
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Frequent Common Substring 

• Let 𝑆 be a set of strings {𝑆1, … , 𝑆𝑘}, of total length 𝑛. Define 𝐼(𝑖), for each 𝑖 = 2, … , 𝑘, as the 
length of a maximal substring that is common to at least 𝑖 strings of S 

• We want to compute for each 𝑖 = 2, … , 𝑘 the value 𝐼(𝑖) 

 
𝑂(𝑘𝑛) 

• Compute a generalized suffix tree 𝑇 for strings 𝑆1$1 … 𝑆𝑘$𝑘 

• Compute how many distinct string identifiers occur below any internal node of 𝑇 

• 𝐶(𝑣) be the number of distinct string identifiers in the leaves of 𝑇 below node 𝑣 
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8.3. Approximate Pattern Matching 
Usually, because of mutations, it makes much more biological sense to find approximate pattern 
matches. 
 
Heuristic Similarity Searches 

• Find short exact matches, and use them as seeds for potential match extension 

• “Filter” out positions with no extendable matches 
 
FASTA: 

• Identify diagonals above a threshold length 

• Diagonals in the dot matrix indicate exact substring matching. 

• Extend diagonals and try to link them together, allowing for minimal mismatches/indels 

• Linking diagonals reveals approximate matches over longer substrings 

 
 
Approximate Pattern Matching Problem: Find all approximate occurrences of a pattern in a text. 

 
 
Query Matching Problem: Find all substrings of the query that approximately match the text. 

 
 
Query Matching: Approximately matching strings share some perfectly matching substrings. 
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Search for perfectly matching substrings (easy). 
Filtration in query matching: 

 
Cerco gli l-mer che appaiono in maniera esatta nel testo, filtro tutto il resto perché questi saranno i 
punti di partenza di un possibile match che deve contenere un l mer esatto e poi cercherò di 
estendere l’l-mer per trovare la soluzione (allineamento locale tra la query e il testo). 

 
 
Local alignment is to slow: Quadratic local alignment is too slow while looking for similarities 
between long strings. 
 
BLAST 

• Great improvement in speed, with a modest decrease in sensitivity 

• Minimizes search space instead of exploring entire search space between two sequences 

• Finds short exact matches (“seeds”), only explores locally around these “hits” 

• Phase 1: Keyword search of all words of length 𝑤 from the query of length 𝑛 in database of 
length 𝑚 with score above threshold. 

• Phase 2: Local alignment extension for each found keyword 

• Extend result until longest match above threshold is achieved 

• Running time 𝑂(𝑛𝑚) 
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Original BLAST 

• Dictionary: All words of length 𝑤 

• Alignment: Ungapped extensions until score falls below some statistical threshold 

• Output: All local alignments with score > threshold 

 
 

 
 
BLAST: Locally Maximal Segment Pairs 

• A segment pair is maximal if it has the best score over all segment pairs 

• A segment pair is locally maximal if its score can’t be improved by extending or shortening 

• Statistically significant locally maximal segment pairs are of biological interest. 

• BLAST finds all locally maximal segment pairs with scores above some threshold. A 
significantly high threshold will filter out some statistically insignificant matches 

 
  
BLAST: matches short consecutive sequences (consecutive seed) 
PatternHunter: matches short non consecutive sequences (spaced seed) 
Is PH better: Higher hit probability. Lower expected number of random hits. 
 
BLAT (BLAST Like Alignment Tool): Same idea as BLAST locate short sequence hits and extend. 
Builds an index of the database and scans linearly through the query sequence, whereas BLAST 
builds an index of the query sequence and then scans linearly through the database 
Index is stored in RAM which is memory intensive, but results in faster searches 
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9. Alignment Free 
 
Basic Axiom of Computational Biology: A high similarity among objects, measured by mathematical 
functions, is strong indication of functional relatedness and/or common ancestry. 
 
Basic Problems: 

• Definition of good similarity/distance functions 

• Development of efficient algorithms for their computation 
 
Alignment-Free Methods: Similarity of two strings is assessed based only on the DICTIONARY of 
substrings that appear in the strings, irrespective of their relative position. 
 
Computational Approaches: 

• Explicit Collection and Use of Word Statistics, either exact or approximate 

• Implicit Collection and Use of Word Statistics 
 
Explicit Collection of Word Statistics: Intuition: two strings are similar if they are composed of the 
same basic building blocks. 

 
• Exact L tuple statistics: 

 
Once Characteristic vector is known, similarity and distance can be computed with dozens 
of formulae. 

• Approximate L tuple statistics: 

 
 
Implicit Collection of Word Statistics: Similarity is captured by quantifying “how easy” it is to 
describe x, given y. Kolmogorov Complexity 

 
• Kolmogorov Complexity 𝐾(𝑥) of a string x is defined as the length of the shortest binary 

program that produces 𝑥 

• Conditional Kolmogorov Complexity 𝐾(𝑥|𝑦) represents the minimum amount of 
information required to generate 𝑥 by an effective computation when 𝑦 is given as an input 
to the computation 

• Kolmogorov Complexity 𝐾(𝑥, 𝑦) of a pair objects 𝑥 and 𝑦 is the length of the shortest binary 
program that produces 𝑥 and 𝑦 and a way to tell them apart. 
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• Universal Similarity metric (USM): is a lower bound, of any computable distance/similarity 
function. Based on Kolmogorov Complexity. 

 
K(x) can be approximated via data compression by using its relationship with Shannon 
Information Theory. 
Given compression algorithm C, K(x) can be approximated by |𝐶(𝑥)|, 𝐾(𝑥, 𝑦) by |𝐶(𝑥𝑦)| and 
𝐾(𝑥|𝑦∗) by |𝐶(𝑥𝑦) − 𝐶(𝑥)|. 
In practice, USM become a methodology that depends critically on the choice of compression 
algorithm. 
Given compression algorithm, three general formulas to approximate USM: 

 
 
Evaluation Methodology: How good is an alignment free similarity/distance functions: 

• Data Sets with a trustworthy classification 

• Statistical Tools to establish the intrinsic ability of the similarity/distance to discriminate 
relatedness of strings ROC Analysis 

• Statistical Tools to establish how well standard classification algorithms  
 
 
Application 1: Comparison of Regulatory Sequences 
Similar binding site contents are expected to drive similar expression patterns. 
Identification of enhancing sequences that regulate the same cell type. 

• Transcription factors binding sites often occur in clusters, also called cis regulatory modules 
(CRMs) 

• The position and orientation of binding sites in CRMs may vary, making an alignment often 
impossible. 

 
Alignment Free Statistics: 

• 𝑫𝟐 statistic: is the correlation between the number of occurrences of 𝑘-mers appearing in 
two sequences 𝐴 and 𝐵. Can be biased by the stochastic noise in each sequence 

 
𝐴𝑤 is the number of times 𝑤 appears in 𝐴 

• To standardize 𝐷2 and to account for different k-mers distributions several statistics have 
been introduced, e.g. 𝐷2

𝑠 and 𝐷2
∗ 
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• 𝑵𝟐 statistic: very similar to 𝐷2
∗ except it counts 𝑘-mers with at most one mismatch and 

considers also the reverse complement. 
Major Problems with Alignment Free Statistics:  

• are influenced by the length / resolution 𝑘 of 𝑘-mers. 

• For CRMs, where multiple binding sites with different lengths are present, a fixed resolution 
𝑘 will never capture the statistics of all binding sites 

• The presence of repeats can alter the occurrence profile of some 𝑘 mers. 
 
Reads quality: generate tons of reads, filter out low quality reads, and work with the rest, assuming 
it is by and large error free. 
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10. Metagenomics 
 
Genetics: the study of individual genes and their roles in inheritance. 
Genomics: it is an interdisciplinary field of science focusing on the structure, function, evolution, 
mapping, and editing of genomes. 
 
Metagenomics: is the study of genomic sequences obtained directly from an environment where 
multiple microorganisms coexists. 
Permette di sequenziare tutto il materiale genetico presente in un campione. 
 

 
 
MetaGenomic Reads Analysis: 

• Reference Based (Supervised): Use reference database to assign reads to a given species 

• Reference Free (Binning) 
 
Kraken (Reference based) 
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MetaProb (Reference based): is a novel reference free assembly assisted tool for metagenomic 
reads binning. 

• Phase 1: Reads are grouped based on overlap information between reads , similarly as in de 
novo assembly. In each group we identify a set of independent reads 

o The construction of the reads overlap graph can be prohibitive 
o We assume that two reads overlaps if they share at least m q mers q =30 
o Reads are progressively merged into groups 
o The k-mer counts of a group can be artificially inflated by overlaps 
o To avoid overcounting overlaps, for each group, we define a subset of independent 

reads (in red) that do not overlap with each other. 

• Phase 2: Extract the probabilistic sequence signature from each group based on k mers 
counts. Groups of reads are clustered based on their sequence signatures 

MetaProb can also estimate of the number of species. 
MetaProb can deal with short and long reads in a novel probabilistic framework, by using 
probabilistic sequence signatures. 
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Binning (reference free): is the process of sorting DNA sequences into group that might represent 
an individual genome or genomes from closely related organisms. 
Si analizzano i contig anzi che le read. 
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Domande di ripasso 
 
Motif Finding 

• Cos'è un Alignment Matrix, Profile Matrix, consensous e score? 

• Definizione di Motif Finding Problem e soluzione. 
Definizione di Hamming distance tra stringhe. 
Definizione di Total Distance tra stringa e DNA. 
Definizione di Median String Problem e soluzione. 

• Che relazione c'è tra Motif Finding Problem e Median String Problem? 

• Che miglioramenti si possono appurare per ottenere una migliore complessità temporale? 
 
Randomized Algorithm for Motif Finding 

• Cos’è un algoritmo randomizzato? 

• Cosa sono gli algoritmi Las Vegas e Monte Carlo? 

• Come si trovano i P-Most Probable l-mer in a single sequence? 
Come si trovano i P-Most Probable l-mer in many sequences? 
Come funziona il Greedy Profile Motif Search? 

• Come funziona il Gibbs Sampling? 

• Come funziona il Random Projection? 
 
Dynamic programming 

• A cosa serve il similarity score? Cosa ha a che fare coN IL dp? 

• Cos'è l'allinemento? 

• Definizione del Longest Common Subsequence (LCS) e soluzione. 

• Definizione di edit distance e sua ricorrenza 

• Definizione di global Alignment e sua ricorrenza 

• Che relazione c'è tra LCS e Global Aligment? 

• Definizione di Scoring Matrix, a cosa serve, quali sono le più comuni. 

• Che differenza c'è tra Global e Local Alignment? 

• Definizione di Local Alignment e sua ricorrenza 

• K-best local alignments 

• Definizione di Alignment with Affine Gap Penalties 

• Definizione di Multiple Alignment e sue possibili soluzioni. 
 
D&C Algorithms 

• Come funziona un algoritmo D&C? 

• Cos'è il block alignement? 

• Definizione del Block Alignment Problem e sua soluzione 

• In che modo si può velocizzare il block alignment? 

• Qual è il problema principale del block alignment? E come si può risolvere? 
 
Genomic Rearrangements 

• Cosa fa un’operazione di reversal? 

• Definizione di Reversal Distance Problem. 

• Definizione di Sorting by Reversals Problem. 

• Definizione di Pancake Flipping Problem. 
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• Cos'è un Adjacency e un Breakpoint? 

• Come funziona l'algoritmo Sorting by Reversals? 

• Cos'è uno strip? 

• Come funziona l'algoritmo ImprovedBreakpointReversalSort? 
 
Molecolar Evolution 

• Come è fatto un Evolutionary Tree? 

• Definizione di Tree Distance e Distance Matrix 

• Di cosa si occupa la Molecolar Evolution? 

• Come si ricostruisce un albero? Qual'è il maggior problema? 

• Definizione di Distance Based Phylogeny Problem. 

• Come funziona il Neighbor Joining Algorithm? 

• Additive Phylogeny Algorithm 
o Cosa sono le Degenerate Triples? Come possono essere usate? 
o Come funziona l'Additive Phylogeny Algorithm? 
o Cosa dice e a cosa serve la The Four Point Condition? 

• Che algoritmi possiamo usare in caso di NOT Additive distance matrix? 

• Parsimony problems 
o Cosa fa il Character Based Tree Reconstruction? 
o Come is calvola il Parsimony score of a tree e a cosa serve? 
o Definizione di Small Parsimony Problem 
o Definizione di Weighted Small Parsimony Problem 
o Come funziona il Sankoff’s Algorithm? 
o Come funziona il Fitch’s Algorithm? 
o Definizione di Large Parsimony Problem e suoi algoritmi risolutivi. 

• Qual'è il problema del Parsimony? E come può essere risolto? 
 
DNA Assembly 

• What is the main problem when reading DNA? 

• What are the 2 ways to read DNA? 

• Definizione di Common Superstring Problem (CSP) e sua soluzione 

• Com'è fatto un overlap graph, a cosa serve? (Hamiltonian Path Approach) 

• Com'è fatto un k-mer Graph (de Bruijn graph)? Come si usa? 

• Cos'è velvet? A cosa serve? 

• Come si gestiscono i repeats? 

• Come si valuta la qualità degli assebly? 
 
Pattern Matching: 

• Come si usano i l-mer per trovare i repeats? 

• Come funziona l'hashing delle sequenze di DNA? E come viene usato per trovare repeats in 
un genoma? 

• Pattern Matching 
o Definizione di Pattern Matching Problem, e come si risolve? 
o Cos'è un Keyword tree? 
o Definizione di Multiple Pattern Matching Problem,e come si risolve? 
o Cos'è un suffix tree? Come si usa per il Pattern Matching Problem? 
o Cos'è un Generalized suffix tree? Come si costruisce? 
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o Come si risolve il Longest common substring problem tra 2 stringhe? 
o Definizione di Frequent Common Substring e come si risolve. 

• Approximate Pattern Matching 
o Approximate Pattern Matching: perché si usa? 
o Definizione di Approximate Pattern Matching Problem 
o Definizione di Query Matching Problem. 
o Come funziona la Filtration in query matching? 
o Come funziona BLAST? E le sue modifiche? 
o PatternHunter, BLAT 

 
Alignment Free: 

• Qual'è il Basic Axiom of Computational Biology? 

• Quali sono i problemi principali? 

• Cosa fanno gli Alignment-Free Methods e quali sono Computational Approaches? 

• Come si valutano le metodologie? 

• Qual'è una applicazzione dell'alignment free? 

• Quali sono le Alignment Free Statistics? E quali problemi hanno? 
 
Metagenomics: 

• Cosa sono la genetica, la genomica e la metogenomica? 

• Quali metodi esistono per analizzare le Reads? 
 
 
 
 
 
 
 
 
 
 
 
 
  


