UNIVERSITA
DEGLI STUDI
DI PADOVA

NOTES OF

ALGORITHMS

FOR

BIOINFORMATICS

Version 22/06/2020)

Edited by:
Stefano Ivancich
Luca Masiero

CONTENTS

R |V oY T Ve [T - SRR PPP 1
O S - 7 £ 1ol OO 1
1.2, Motif FINdiNg Problem ... e e e e e reeaaaaeas 2
1.3, Median String Problem ... et e e e e e e e e et r e e e e e nanaaaeeaeean 2
1.4, SEAICR TIEE ...ttt et e b e b et e be e e be e e b et e s ar e e sae e e st e e sane e sareennree e 3
1.5, Branch @and BOUN.............ooiiiiiiiiiiiiie ettt ettt e e st e e s e e s bt e e snbeeesnbeeesnareeens 4

2. Randomized Algorithms for Motif FINdiNg..............cccvvviiiiiiiii e 7
2.1. Greedy Profile MOtif SEArChuiiiiiiiie e e e e e et e e e e e e e eanraeeas 7
2.2, GIbbS SAMPIING ..o e e e e e e e e e s ebrae e e e e e e narraeeas 9
P20 TN 1 ¥ 11 Vo FoT o T oY 1=Tot T] 4 PP 10

3. DYNaMIC ProgrammINGcoooiiiiiiiiiiiiiiiiiii ettt ettt e et e e eeeeeeaeeeeeeeas s ab bt bbb eaeeeeeeeeeeeaaaaaeaens 11
3.1, Bt DISTANCE ..ot e e s e e s b e e s anr e e e s anre e e s rreeesnee 11
3.2, SeqUENCE ALIBNMENTooi i e e e e e e e e e re e e e e e e abaeeeeeeeenstaeeeeeeennsbaaeeeeeannnnees 12

3.2.1. GlObal AlIBNMENT ... e e e e e e e e et a e e e e e e ranaareee s 12
3.2.2. LOCAl AlIBNMENT..... ..o e e e s s st e e e s ss bt eeeeeesssnbtaeeaeesaans 13
3.2.3. Alignment with Affine Gap Penaltiescooeviiiiiiiiiii e 14
3.3, MUltiple ABNMENT.........ooo o e e s e e e e et e e e e e e e aataeeeeeeennsbaeeeeeesnneees 15

4. Divide & Conquer AlBOrItRMSoooiiiiiiii e e e e e e arareea s 19

5. Greedy Algorithms and Genome RearrangemeEntsccccuuieiiiiiiiiiiiieeeiiiiieeee e e eesirre e e e s essreeeeeeeeeans 23

6. Molecular EVOIULION.........ccooiiiiiie et sttt e st e e s eabe e e e s are e e e sabeeesanreeeeas 25
6.1. Additive Phylogeny Algorithmoo o 26
6.2. NOT Additive distance MatriX...........ccooiiriiiiiiierie e s e 27
6.3. Weighted Small Parsimony Problemoooiiiiiiiiiii et 28

6.3.1. Sankoff’'s AlBOrthm...........coooiiiiiii e 29
6.3.2. Fitch’s AlGONItRMoeeiiii e e e s s rre e e e s e 30
6.3.3. Large Parsimony Problem ...t e e e e 30

7. DINA ASSEMDBIY.....oooiie e e e e e e e e e e e e et —a e e e e e eeaabaaeeeeeeannrraraaeeaaans 31

8. PatterN IMatChing........oceeiiiiiiiee e e e e e e e s e s bt e e e e e s rae e e e e e sarreaeaas 35
8.1. GENOMIC REPEALS ...ttt ettt e e e bbb b e bttt e ettt e e e e aeaaaaaaeeeeeeeaeeaanaaaas 35
8.2, PatterN IMAtCRINGoiiiiiiie e e e e e e e e et e e e e e et ra e e e e e e naraeaeeeeennrees 36
8.3. Approximate Pattern MatChing..............coooiiiiiiiiii e e e 39

L T VT T4 =T o N o T U 43

10. Y L= & T-d=T Lo T4 o 1 o OO TP PP PP PP P PP PPT PPN 46

This document was written by students with no intention of replacing university materials. It is a
useful tool for the study of the subject but does not guarantee an equally exhaustive and complete
preparation as the material recommended by the University.

The purpose of this document is to summarize the fundamental concepts of the notes taken during
the lesson, rewritten, corrected and completed by referring to the slides to be used in the design of
Bioinformatics algorithms as a "practical and quick" manual to consult. There are no examples and
detailed explanations, for these please refer to the cited texts and slides.

If you find errors, please report them here:
www.stefanoivancich.com/
ivancich.stefano.1@gmail.com

The document will be updated as soon as possible

https://www.stefanoivancich.com/
mailto:ivancich.stefano.1@gmail.com

1.Motif Finding

1.1. Basics

DNA: sequenza di lettere ACGT
Genoma: sequenza di DNA. Sequenza di {4,C, G, T}
e Uomo: 3 miliardi di caratteri
e Batteri: 600mila
e Virus: migliaia
Gene: sottostringa del DNA
e codifica (produce) le proteine.
Proteina: stringa su un alfabeto di 20 caratteri
e ¢ un mattoncino elementare per costruire la cellula.
e Amminoacido: singolo carattere della proteina. Composto da una 3-pleta di ACGT

Implanting Motif: si inserisce una stringa in diversi punti in un'altra stringa.
actgatactagatcatagacatg --AAAGGG----> actgaAAAGGGtactagatcataAAAGGGgacatg
e With mutations: si impianta la stringa e si cambiano dei caratteri a caso nella stringa
impiantata:
actgaAgAtGGtactagatcataAtAaGGgacatg
Challenge problem: trovare un Motif in un esempio che ha
e tsequenze
e ognisequenza ha un pattern impiantato lungon
e ogni pattern impiantato ha K mutazioni.
e (N,K)-motif

Supponiamo di conoscere gli indici di inizio del motif: s = (sy, ..., ;)
e Allineo le stringhe in una matrice (Aligment Matrix)
e Per ogni colonna conto quante volte si ripetono le ATGC (Profile Matrix)

e Consensus: prendo il massimo di ogni colonna. /

r 7 A

aGgtacTHt

t: number of DNA sequences CcAtacgt
n: length of each DNA sequence acgtTAgt,,

DNA: t X n array acgtCcaAaAt

l: length of the motif (I-mer) Cegtacgg

s;: starting position of an [-mer in sequence i

s = (sy, ..., S¢): array of motif’s starting positions A 30103110

C 24001400

Score(s,DNA) = Y!_, max _count(k,i) G 01400031

kelAT.C,6) T 000510014

Piu grande ¢ lo score piu le stringhe sono correlate.

Consensus a cg tacgt

Score 3+4+4+5+3+4+3+4=30

1.2. Motif Finding Problem

Motif Finding Problem: Given a set of DNA sequences, find a set of [-mers, one from each sequence,
that maximizes the consensus score.
Input:
e t X n matrix of DNA
e [length of the pattern to find
Output: An array of t starting positions s = (s, ..., S;) maximizing Score(s, DNA).

Brute force solution: 0(I(n — I + 1)%) = 0(In%) compute the scores for each possible combination
of starting positions s

BRUTEFORCEMOTIFSEARCH(DN A, t,n, ()

1 bestScore — 0

2 for each (sy....,s;) from (1,..., HNto(n—1+1..... n—1+1)

3 if Score(s, DNA) > bestScore

4 bestScore « Score(s, DN A)
5 bestMotif « (s1,s92,...,: st)
6 return bestMotif

1.3. Median String Problem

Hamming Distance dy (v, w) =# nucleotide pairs that do not match
TotalDistance(v, DNA) = (min)dH (v, s)
S=(S S

=10t
e For each DNA sequence i, compute all dy (v, x) where x is an [-mers with starting position

Si

e Find minimum of d (v, x) among all [-mers in sequence i
Median String Problem: Given a set of DNA sequences, find a median string.
Input:

e t X n matrix of DNA

e [length of the pattern to find
Output: A string v of [nucleotides that minimizes TotalDistance(v, DNA) over all strings of that
length.

Brute force solution: O(nt4') compute the scores for each possible combination of v
(AAA...,..,TTT..)
BRUTEFORCEMEDIANSEARCH(DN A, t,n, 1)

1 bestWord «— AAA - .- AA

2 bestDistance +— >

3 for each -mer word from AAA..Ato TTT...T

4 if TOTALDISTANCE(word, DN A) < bestDistance
5 best Distance «— TOTALDISTANCE(word, DN A)
6 bestWord «— word

7 return bestWord

Motif Finding Problem = Median String Problem: Maximizing Score = minimizing TotalDistance

;
/—/%
aGgtacTt * Atanycolumn i
CehAtacgt Score;+ TotalDistance; = t
Alignment acgtTAgt »¢
acgtcCecAt
Cegtacggt - Because there are fcolumns
Score + TotalDistance = [* t
A 30103110
Profile C 24001400 .
€ 01400031 * Rearranging:
T 00051014 Score= [*t - TotalDistance
Consensus acgtacgt . [* tlS Constant
Score 3+44445+3+4+3+4 Minimization of the right side is
FotalDict telr0r2e1s2e1 equivalent to the maximization
ota. i1stance +1+1+0+2+1+2+ OftheleﬂS|de
Sum 55555555

1.4. Search Tree

Search Tree: is used to implement these two lines:
e Motif Finding problem: for each (si...... s¢) from (1,. .., to(n—1+1,.... n—1+1)
° Median Stnng problem: for each /-mer word from AAA..Ato TTT..T

And provide 4 moves than can be used to skip fewer promising values:

NEXTLEAF(a, L, k) Next Location \\

1 fori—Ltol

2 if a; <k
3 ; «~— iz + 1 6
4 relurn a /@4 \ / x@ / \
5 ; «—
6 return a @ < @
ALLLEAVES(L, k) Order of steps

1 a—(1,...,1)
2 while forever

3 outputa
a — NEXTLEAF(a, L. k)
if a=(1,1,...,1) a2)

return

.

[s RN

3&

Locatlon after 5

NEXTVERTEX(a, i, L, k) next vertex moves
1 ifi<lL
2 i —1

return (a,i+ 1)
else

for j— Lto1l K

DI / \@

if a; <k
a; ‘—aj +1
retumn (

return (a,0)

e W

oo s o

Bypass(a,i, L, k)
1 for j—itol

2 if a; <k
3 ﬂ.j — ﬂ-j —+ 1
4 return (a, j)

5 return (a,0)

1.5. Branch and Bound

Same Worst Case but average case is better.

Branch and Bound Motif Search: If we have analyzed the S

first i sequences and they provide a very bad score, a2t g tan® i ; _

assuming that the rest t — i lines gives the best score t : s ;\ : x< g : _]?C. Seore(s,i,DNA)

possible, but this is less than the previous BestScore acgtCcat i
Ccgtacg6gG } t_ = (,

found, it has no sense to continue searching in that

branch, so we skip directly to the next branch using ByPass (), otherwise we continue searching

using NextVertex ()

This saves us from looking at (n-1 + 1)t~ |eaves.

BRANCHANDBOUNDMOTIFSEARCH(DN A.t.n.l)
1 8=y 1)

2 bestScore — 0
3 1«1
4 while i >0
5 if i<t #Internal Nodes
6 optimisticScore — Score(s,i. DNA) + (t —i) -1
7 if optimisticScore < bestScore
BRUTEFORCEMOTIFSEARCHAGAIN(DN A, t. 1. 1) 8 (s,i) — BYPASS(s,i,t,n — 1 +1)
1. STl 1) 9 else
2 be ~'5"~/j — Score(s,DNA) 10 (s.i) «— NEXTVERTEX(s.i.t,n — [+ 1)
e st e fl) 12 if Score(s. DN A) > bestScore
? it S (\ DiA) / % Hfb(w.i 13 bestScore — Score(s)
6 bestScore — Score(s. DN A)))
7 bestMotif — (s1,s2....,) 14 bestMotif — (s1,s2,...,5¢)
8 i 5= [l T 1) 15 (s,i) — NEXTVERTEX(s,i. t.n — 1+ 1)
9 return bestMotif 16 return bestMotif

Branch and Bound Median String Search: if the total distance for a prefix is greater than that for
the best word so far: TotalDistance (prefix, DNA) > BestDistance, there is no sense exploring the
remaining part of the word. So we skip directly to the next branch using ByPass (), otherwise we
continue searching using NextVertex ()

BRANCHANDBOUNDMEDIANSEARCH(DN A, t,n,[)

12
13
14
15
16
17
18

s (1,1,...,1)
best Distance «— o
i—1
while i >0
if i <l
pre fir < nucleotide string corresponding to (s1,s2,..., ;)
optimisticDistance «— TOTALDISTANCE (prefixz, DN A)
if optimisticDistance > bestDistance
(s,i) «— BYPASS(s,7,1,4)
else
(s,i) «— NEXTVERTEX(s,,[,4)
else
word < nucleotide string corresponding to (s1, s2,...51)
if TOTALDISTANCE(word, DN A) < bestDistance
best Distance — TOTALDISTANCE(word, DN A)
bestWord — word
(s,i) « NEXTVERTEX(s,,1,4)
return bestWord

There are other techniques that uses more constraint on the bounds, and others that don’t find the

best solution but a good one. _

4

l

Planted Motif Search (PMS): O (nm (d

computer
Given the sequence §;
e (; = collection of all possible [-mers
e L; = From C; Generate all patterns at hamming distance d
e SortlL;
e Eliminate duplicates from L;
e Find motif common to all lists L;

)3d é) where d: hamming distance, w: word length of

2.Randomized Algorithms for Motif Finding

Randomized quicksort: pick the pivot randomly enables to have O(nlogn) expected run time.

Las Vegas Algorithms: always produce the correct solution (eg. Randomized quicksort), but they are
often hard to come by.
Monte Carlo Algorithms: do not always produce the correct solution.

2.1. Greedy Profile Motif Search
Let s = (sy, ..., S¢) be the set of starting positions for [-mers in our t sequences.
The substrings corresponding to these starting positions will form:
e t X [alignment matrix
e 4 X[profile matrix P, defined in terms of the frequency of letters, not as the count of
letters.
Pr(alP) = [I}L; pq, probability that an [-mer a was created by the Profile P.
e If ais very similar to the consensus string of P then Pr(a|P) is high
e If ais very different to the consensus string of P then Pr(a|P) is low
Given a profile: P =

A 12| 7/8 3/8 0 1/8 0
C | 1/8 0 1/2 | 518 | 3/8 0
T | 1/8 | 1/8 0 0 14 | 7/8
G| 1/4 0 1/8 | 3/8 | 1/4 | 1/8

The probability of the consensus string:
Prob(aaacct|P)=1/2x 7/8 x 3/8 X 5/8 x 3/8 X 7/8 = .033646

Probability of a different string:
Prob(atacag|P) = 1/2 x 1/8 x 3/8 x 5/8 x 1/8 x 1/8 = .001602

P-Most Probable I-mer in a single sequence: is the [-mer in that sequence which has the highest

probability of being created from the profile P.
Given a sequence = ctataaaccttacatce, find the P-most

probable /-mer
Compute prob(a|P) for every possible 6-mer:

String, Highlighted in Red Calculations Frob(a|P)
ctataaaccttacat 1/8x1/8x3/8x0x1/8x0 0
ctataaaccttacat 12x7/8x0x0x 1/8x0 0
ctataaaccttacat 12x1/8x3/8x0x1/8x0 0
ctataaaccttacat 1/8x7/8x3/8x0x3/8x0 0

ctataaaccttacat 1/2x7/8x3/8Xx35/8x3/8x7/8 .0336
ctataaaccitacat 1V2x 718 x1/2x5/8x1/14x7/8 .0299
ctataaaccttacat 1/2x0x1/2x014x0 0
ctataaaccttacat 1/8x0x0x0x0x1/8x0 0
ctataaaccttacat 1/8x1/8x0x0x3/8x0 0
ctataaaccttacat M8 x 1/8x3/8x58x1/8x7/8 .0004

To avoid many entries with prob Pr(a|P) = 0, there exist techniques to equate zero to a very small
number so that one zero does not make the entire probability of a string zero.

7

P-Most Probable I-mer in Many Sequences: 1l alalalc]|alt
. . 2 a t a g C g

e Find the P-most probable [-mer in each of the sequences. T BT

e Align those [-mers in a matrix. : g afajecpc |t

. A a t a g C t

e (Calculate a new Profile matrix 5 | g | a | c | c |t | g

e Compare it to the old Profile matrix. If the score had |+ "+ ——
increased it ok, otherwise we are in the wrong direction. A |58 |58 48] 0 [0 | 0

C 0 0 4/8 6/8 4/8 0

T 1/8 3/8 0 0 318 6/8

Greedy Profile Motif Search: G |22 | o | o |28 | s | 28

e Select random starting positions.

e Create a profile P from the substrings at these starting positions.

e Find the P-most probable [-mer a in each sequence and change the starting position to the
starting position of a.

e Compute a new profile based on the new starting positions after each iteration and proceed
until we cannot increase the score anymore.

GREEDYPROFILEMOTIFSEARCH(DN A, t,n,l)

1

U1 o= W

6
7
8
9

Randomly select starting positions s = (s1,...,s;) in DNA
Form profile P from s
bestScore «— 0
while Score(s, DN A) > bestScore
bestScore «+ Score(s, DN A)
for i — 1tot
Find a P-most probable [-mer a from the ith sequence
s; « starting position of a
return bestScore

Since we choose starting positions randomly, there is little chance that our guess will be close to an
optimal motif, meaning it will take a very long time to find the optimal motif. It is unlikely that the
random starting positions will lead us to the correct solution at all. In practice, this algorithm is run
many times with the hope that random starting positions will be close to the optimum solution
simply by chance.

2.2. Gibbs Sampling

Greedy Profile Motif Search changes starting positions (s, ..., S;) between every iteration, and may
change as many as all t positions in a single iteration. Gibbs sampling is an iterative procedure that
at each iteration discards one [-mer from the alignment and replaces it with a new one. In other
words, it changes at most one position in s in each iteration and thus moves with more caution in
the space of all starting positions.

Gibbs Sampling:

e Randomly select starting positions s = (sy, ..., s;) in DNA and form the set of [-mers starting
at these positions.

e Randomly choose one of t sequences.

e Create a profile P from the [-mers in the remaining t — 1 sequences.

e For each position in the removed sequence, calculate the probability that the [-mer starting
at this position is generated by profile P

e Choose the new starting position for the removed sequence randomly, according to the
probabilities calculated in step 4.

e Repeat steps 2-5 until there is no improvement.

Input: 1) Randomly choose starting positions,
t = 5 sequences, motiflength /=8 s=(s,s,,s;,5,55) in the 5 sequences:

1. GTAAACAATATTTATAGC s,=7 GTAAACAATATTTATAGC
2. AAAATTTACCTCGCAAGG s;=11 AAAATTTACCTTAGAAGG
3. CCGTACTGTCAAGCGTGG s;=9 CCGTACTGTCAAGCGTGG
4. TGAGTAAACGACGTCCCA s,=4 TGAGTAAACGACGTCCCA
5. TACTTAACACCCTGTCAA s5=1 TACTTAACACCCTGTCAA

2) Choose one of the sequences at random:
] ~ Sequence 2: AAAATTTACCTTAGAAGG
3) Create profile P from /-mers in remaining 4 4) Calculate the prob(a|P) for every possible 8-

sequences: mer in the removed sequence:
1 A A T A T T T A Strings Highlighted in Red prob(a|P)
3 Tlc|Aa|lAaleo|c|ao|T AAAATTTACCTTAGAAGG 1000732
1 el T Al Al A clc|a AAAATTTACCTTAGAAGG .000122
AAAATTTACCTTAGAAGG 0
5 r/ Ajcj]T] T Al AlC AAAATTTACCTTAGAAGG 0
A V4 | 24 | 24 | 34 | 14 | 14 | s | 24 AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
c 0o |14 14| 0| 0 |24] 0 | 14
AAAATTTACCTTAGAAGG 0
T 2/4 | 1/4 14 | 1/4 | 2/4 1/4 | 14 | 1/4 AAAATTTACCTTAGAAGG 000183
G v o | o o]l o3| o AAAATTTACCTTAGAAGG 0
rer— AAAATTTACCTTAGAAGG 0
g | T | A A AT C]G A AAAATTTACCTTAGAAGG 0

Gibbs sampling needs to be modified when applied to samples with unequal distributions of
nucleotides.

Gibbs sampling often converges to locally optimal motifs rather than globally optimal motifs.
Needs to be run with many randomly chosen seeds to achieve good results.

2.3. Random Projections
We randomly select a subset of positions in the pattern creating a projection of the pattern.

Search for that projection in a hope that the selected positions are not affected by mutations in
most instances of the motif.

Projection:
e Choose k positions in string of length [
e Concatenate nucleotides at chosen k positions to form k-tuple.
This can be viewed as a projection of [-dimensional space onto k-dimensional subspace.

=15 Projection k=7

Projection = (2. 4, 5, 7, 11, 12, 13)

Random Projections Algorithm: (single iteration)
e Select k out of [positions uniformly at random.

e For each [-tuple x in input sequences, hash it into a bucket labeled by h(x) (the label is

composed by the letter at k selected positions).
Choose projection (1,2,5,7)

.. .TAGAJATCCGAJTTGCCTTACPAC. . .

Buckets ESEEEES
—
—
ATGC GCTC
e For each bucket h containing more than s sequences (enriched buckets), extract a motif
using a local refinement algorithm.
For example, using Gibbs Sampler: form a profile P(h), then use P(h) as starting point to
obtain refined profile P*.

Al1 0 25 5 0 500
cloo 25 250 0 1
G| oo 5 0o 1 250
T/0o10 250 250
| ATGTGAC |
Local refinement algorithm e x ATGC Profile P
ATGACGC J ATGCGAC Gibbs sampler
Candidate motif
’
ATGC Refined profile P*
e Candidate motif is best found by selecting the best motif among refinements of all enriched
buckets.

Some projections will fail to detect motifs but if we try many of them (run multiple times the
algorithm) the probability that one of the buckets fills in is increasing.

Random Projection is a procedure for finding good starting points: every enriched bucket is a
potential starting point. Feeding these starting points into existing algorithms (like Gibbs sampler)
provides good local search in vicinity of every starting point.

Choosing Projection Size k:
e small enough so that several motif instances hash to the same bucket.
e large enough to avoid contamination by spurious [-mers.

10

3.Dynamic Programming

Computing a similarity score between two genes tells how likely it is that they have similar functions.
Dynamic programming is a technique for revealing similarities between genes.

V = ATCTGATG n=8 4 matches
3.1. Edit Distance W=TGOATAC | m=7 G
Alignment: 2 * k matrix where k > m,n [N T2
Same characters are aligned, then insert and delete some v [A)|T\—[C\|—/T\[G/A [T |3
characters. w|—gleldialr—la/—|d

'\ndels*'w’:

insertion

Longest Common Subsequence (LCS): is the sequence of positionsinv:1 <i; < - <i; <mand
w:l < j; <--- <J < nsuch that the i;-th character of v = j;-th character of w and t is maximal.
Every common subsequence is a path in a 2-D Manhattan grid:

e diagonals are alignable characters (matches)

e others identify insertions/deletions
Solution: find the path that maximize the number of diagonals (we want to maximize the matches).

A T ¢ T A T ¢
2 3 4 6 l
-
elementsofv | A| T c TilelAITIC
elementsofw |~ | T|G6|C|A|T|=-|Al=-|C c
1 3 5 6
A
(0,0)2(1,0)2(2,1)3(2.2)>(3.3)>(3.4)>(4,5)>(5,5)>(6.6)>(7.6)>(87) T
. positionsinv: 2<3<4<6<8 A S
Matches shown in red » . l
positionsinw: 1 <3<5<6<7 c
0(nm)
LCS(v,w)
1 for:— Oton PRINTLCS(b, v,1,)
2 sio — 0 1 ifi=0o0rj=0
3 for j—1tom
1 0 2 return
50,5 ~ s o "
5 fori— 1lton 3 if b ="\
6 for j «— 1tom 4 PRINTLCS(b,v,i — 1,7 — 1)
Sim1,j 5 print v;
7 Sij e max<{ Sij—1 6 else
; Sa—l..f;—l +1, ifv; =w, 7 if bi.j o« I-H
_ O 8 PRINTLCS(b,v.i — 1, 7)
8 bi i T if Sij = Sig—1)
b \”: if Si, = Si—1,5—1 +1 else
9 return (s,,,,,b) 10 PRINTLCS(b,v,i,7 — 1)

Edit distance d(v,w) = MIN number of elementary operations (insertions, deletions, and
substitutions) to transform v in w.
Is calculated according to the initial conditions d; o = i,dy; = jforalll <i<nand1 <j <mand
the following recurrence:
diy; +1
dij=min< d;;j—1+1
d?’—l.j—l: ifv; = ws

11

3.2. Sequence Alignment

3.2.1. Global Alignment
LCS allows only insertions and deletions (no mismatches), awards 1 for matches and does not
penalize indels.
Simplest scoring schema:
e +1: match premium
e u: mismatch penalty
e o:indel penalty

Global Alignment: Find the best alignment between two strings under a given scoring matrix. 0(n?)
e Input: Strings v, w and a scoring matrix &
e Output: An alignment of v and w whose score is maximal among all possible alignments of
vandw.
si—1,j +0(vi, —)
S;; =max\s S;;_1+0(— w;)
Si—1,5—1 —-J(Uizuﬁ)
Score = #matches — u * #mismatches — o * #indels
LCS problem is the Global Alignment problem with the parameters u = 0, ¢ = 0.

Scoring Matrices
Scoring techniques:
e Identity: matches/sequence size
e Conservation: combine matches, mismatches and indels
Scoring matrix & size= (|Z] + 1) X (|Z| + 1) (where +1 is for the gap character “-“)
Scoring matrices are created based on biological evidence. Alignments can be thought of as two
sequences that differ due to mutations. Some of these mutations have little effect on the protein’s
function, therefore some penalties in & will be less harsh than others.
Common Matrices for protein sequence comparison:
e point accepted mutations (PAM): 1 PAM = 1% of all amino acid positions are changed.
e Block substitution (BLOSUM): Scores derived from observations of the frequencies of
substitutions in blocks of local alignments in related proteins.

Local vs. Global Alignment
e Global: tries to find the longest path between vertices (0,0) and (n,m) in the edit graph.
e Local: tries to find the longest path among paths between arbitrary vertices (i,) and (i’, ")
in the edit graph.
In the edit graph with negatively scored edges, Local Alignment may score higher than Global
Alignment
Global Alignment

——T—CC-C-AGT—TATGT-CAGGGGACACG—A-GCATGCAGA-GAL
T e e N \
AATTGCCGCC-GTCGT -T-TTCAG-—-—CA-GITATG—T-CAGAT--C

Local Alignment—better alignment to find
conserved segment
tccCAGTTATGTCAGgggacacgagcatgcagagac
FEEEErrrrrnrt
tgccgecegtegttttcagCAGTTATGTCAGatC
12

3.2.2. Local Alignment
Local Alignment: Find the best local alignment between two strings. O(n*)
e Input: Strings v, w and scoring matrix 6
e Output: Alignment of substrings of v and w whose alignment score is maximum among all
possible alignment of all possible substrings.

|_— Compute a “mini”
Global Alignment to
get Local

Global alignth

Solution: with dynamic programming 0(n?)
Imagine that exist another arc, with 0 weight, that from the origin go to every other node. So we

can go from the origin to any other vertex without penalties.
Long run time O(h9¥):

-Inthe grid of sizenx n
there are ~n?2 vertices (i f)
that may serve as a

source.

_ - For each such vertex
"N computing alignments
from (1)) to (")) takes
|| | O(n?) time.

't This can be remedied by
J .| giving free rides

0 Notice there is only
this change from the
original recurrence of
a Global Alignment

. =max 5”,}-}+§(VJ—,W}J
S}'J,j +5(I')—J'J 7)
51,}1 ‘/‘(S(_, W})

K-best local alignments: Several local alighments might have biological significance

Output best k non overlapping alignments:
e A particular local alignment can be specified by the edges that it uses during the traceback.
e Two local alignments are said to be disjoint if they do not use any of the same edges.

A Simple algorithm O(knm):
ForbiddenEdges=[]
Fori=1 . k:

* Fill in the dynamic programming matrix, disallowing
the use of any ForbiddenEdges

* Traceback, adding every visited edge to
ForbiddenEdges

13

3.2.3. Alignment with Affine Gap Penalties ATA__GC ATAG_GC

In nature, a series of k indels often come as a single event ATATTGC AT_GTGC
rather than a series of k single nucleotide events. So 1 \ / 1
. .) Normal scoring would
applying the penalty o k consequent times, it’s too severe. This is more give the same score This is [ess
likely. for both alignments likely.

Gap: contiguous sequence of spaces in one of the rows

Score for a gap of length x is: —(p + ox)

where p > 0 is the penalty for introducing a gap (gap opening penalty)

p will be large relative to o (gap extension penalty) because you do not want to add too much of a
penalty for extending the gap.

To reflect affine gap penalties, we have to add “long” horizontal and vertical edges to the edit graph.
Each such edge of length x should have weight —(p + ox)

There are many such edges!

Adding them to the graph
increases the running time
of the alignment algorithm
by a factor of n (where n is
the number of vertices)

So the complexity increases
from O(n?) to O(n%)

So we use 3 Manhattan grids: each has arcs only in 1 direction

e The main level is for diagonal edges. Extends matches and mismatches.

e The lower level is for horizontal edges. Creates/extends gaps in sequence v.

e The upper level is for vertical edges. Creates/extends gaps in the sequence w.
Jumping penalty from the main level to either the upper level or the lower level —p — @

Lower Level

Matches/Mismatches

Upper Level

y Gapsinv

‘lg”_ = ' é{._” -g Continue Gap in w (deletion)

max | §,; —(p+0) Start Gap in w (deletion): from middle
Tg;”,. = 5’[.)]._1 -0 Continue Gap in v (insertion)

max| §,;.,—(p*0) Start Gap in v (insertion):from middle
S, = - %_,J_T +0(Vv;, w) Match or Mismatch

max-< S ;; End deletion: from top

S

i End insertion: from bottom

14

3.3. Multiple Alignment

Alignment between more than 2 sequences.

Alignment of k sequences is represented as a k-row matrix
The path is k-dimension Manhattan grid space.

Run time: 0 (2¥n%*) (k sequences each of length n)

\"

_

) In 2-D, 3 edges
2-D edit graph in each unit
\ square

] - | In 3-D, 7 edges
3-D edit graph in each unit cube

(i-1j,k-1)

(i-1,j-1,k-1)
(i-1j-1k) \ (i-14.k) s _ 4. cube diagonal:
Sigjorl T o, Wy)) 9

. J no indels
Spijrk TOMVy Wy)

Sigjer T o, , uy

Sijk = Max <
face diagonal:
Sytir 0L W) | one indel
Szle,k + (Vj-, ., 7)

Sijr T O(,w,) | edge diagonal:

) . - :
L8 + 68 two indels
(ijk-1) I . S!Jﬂ’(—l ¢ -(_)) M:’F)

(ij-1k-1) N

(LK) I e X, ¥, z) is an entry in the 3-D scoring matrix

Run time for the exact solution is impractical.

Every multiple alighment induces pairwise alignments.

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments. Not always possible.
From an optimal multiple alignment, we can infer pairwise alignments between all pairs of
sequences, but they are not necessarily optimal

It is difficult to infer a “"good” multiple alignment from optimal pairwise alighments between all

sequences
Aligning alignments: do it by aligning the profiles.

Greedy Approach: Choose most similar pair of strings and combine into a profile, in this way
reducing alignment of k sequences to an alignment of k-1 sequences/profiles. Repeat

[= ACGTACGTACGT... ——% U= ACZATACE/TACE/T.)
u, = TTAATTAATTAA... u, = TTAATTAATTAA. .. L -
F 4 u;=ACTACTACTACT... (
u, = CCGGCCGGCCGG..

u, = CCGGCCGGCCGG

15

* There are m = 6 possible alignments

s2 GTCTGA sl GATTCA--

s4 GTCAGC (score = 2) 54 G-T-CAGC(score = 0)
sl GATTCA

sl GAT-TCA s2 G-TCTGA
52 GTCTGA s> c-Tcrea (score = 1) s3 GATAT-T (score = -1)
53 GATATT

s1 GAT-TCA s3 GAT-ATT

54 GTCAGC s3 GATAT-T (score = 1) s4 G-TCAGC (score = -1)

new set of 3 sequences:

s, and s, are closest; combine:
s; GATTCA

s2 GTCTGA s, GATATT
s, , GTCt/aG
s4 GTCAGC | _#7 S, 4 GICi/aG
; scores is:
new set 1s:
i scores are:] sl,3 GATATT | | 81,3 GATATT
set is: R = 4 -TCTG ore=-
(" s1 GAT-TCA - 82,4 GTCTGA 52,4 G-TCTGA (score=-1)
sl GATTCA ‘ |_s3 GATAT-T (score 1) J
s GATATT (] 2
s2,4 GTCTGA =l 81 GATTC--A
s2,4 G-T-CTGA (score = 0)]
s3 GATATT- Form consensus:

\ s2,4 G-TCTGA (score=-1) .
. sl,3,2,4 = GATCTG
Take best pair and form another consensus:

s1,3 = GATATT (arbitrarily break ties) (arbitrarily break ties)

Progressive alignment: is a variation of greedy algorithm with a somewhat more intelligent strategy
for choosing the order of alignments.
Works well for close sequences, but deteriorates for distant sequences.

e Gaps in consensus string are permanent

e Use profiles to compare sequences

Star approach: Given k sequences
e Pick one sequence x. as the center
e Foreach x; # x. determine an optimal alignment between x; and x,
e Merge pairwise alignments
e Return: multiple alignment resulting from aggregate
Two possible approaches:
e Try each sequence as a center, return the best multiple alignment
e Compute all pairwise alignments and select the string x. that maximizes: inixc sim (x;, x.)

Tree approach: organize multiple sequence alignment using a guide tree
e Leaves represent sequences
e Internal nodes represent alignments
e Determine alignments from the bottom of the tree upward
e Return the multiple alighment represented by the root of the tree

Scoring: techniques to evaluate the quality of a multiple alignment

16

¢ Number of matches (multiple longest common subsequence score): A column is a “match”
if all the letters in the column are the same. Only good for very similar sequences.

e Entropy score: idea: try to minimize the entropy of each column. Columns that can be
described using few bits are good.
Entropy for a multiple alignment is the sum of entropies of its columns:

2 over all columns) X=A,T,G,C pxlogpx

4 column entropy:
eniropy| - |=0 Best case ~(pdogp,+ plogp. + plogp. + plogpy
A4
A AlA|A *Column 1 = -[1*log(1) + 0*log0 + 0¥log0 +0*1log0]
=0
4 AlC|C *Column 2 = -[(Y,)*log(/) + (/) *log(*/,) + 0*log0 + 0*log0]
‘T L . Alcla = [(Y)*(-2) + (/)¥(-415)] = +0.811
entropy _ | = *Zflogf =—4(-*-2)=2 *Column 3 = -[(/y)*log("/ (") *log (/) +() log(My) +(V/y)*log(V))]
Worst case G 4 "4 4 AlclT =47 [(Y)*(-2)] = 2.0

¢ *Alignment Entropy =0+ 0.811 +2.0=+2.811

e Sum of pairs (SP Score)

o From a multiple alignment, we can infer pairwise alignments between all sequences,
but they are not necessarily optimal. A 3D alignment can be projected onto the 2D
plane to represent an alignment between a pair of sequences.
s*(ai, aj): score of this suboptimal pairwise alignment
SP-Score: s(ay, ..., ay) = Zi'js*(al-, aj)

Alignment as a Graph:
Input Sequences

o—o—E—0—0C—00—0—u—0

O——E—D—0D—0—0

[

®—6 0 00 @

Minimal Common Supergraph

/®\ ./@—@—@

&

GY ®—@®

17

18

4.Divide & Conquer Algorithms

Divide problem into sub problems

Conquer by solving sub problems recursively. If the sub problems are small enough, solve them
directly.

Combine the solutions of sub problems into a solution of the original problem (tricky part)

Divide and Conquer Approach to LCS:

Path (source, sink)

if(source & sink are in consecutive columns)
output the longest path from source to sink

else
midd/e — middle vertex between source & sink
Path(source, middie)
Path(middle, sink)

Block Alignment & Four Russians Speedup

Partition the nxn grid into blocks of size txt
each sequence is sectioned off into chunks, each of length t
Sequence U = U ... U, becomes |uq ... Ue| [Ueyq o Unt| oo [Up_t31 - Unl
Sequence v = v ... v, becomes |v; ... Ve| |Vesq v Uag] oo [Vn—tqq o Ul

n nlt
‘/)/K, ~ — A
' ! 3\
—A
n < l { L onlt
N\ /
L partition)

Block alignment of sequences u and v:
e An entire block in u is aligned with an entire block in v
e An entire block is inserted
e An entire block is deleted
Block path: a path that traverses every txt square through its corners

valid invalid

19

Block Alignment Problem: Find the longest block path through an edit graph.

e Input: Two sequences, u and v partitioned into blocks of size t.

e Output: The block alignment of u and v with the maximum score (i.e., the longest block path

through the edit graph).
Solution: compute alignment score f3;; for each pair of blocks |uG_1)«ts1 - Use| and
|v(j—1)*t+1 "-vj*tl
For each block pair, solve a mini ?Jirgnment problem of size txt
A

Solve mini-alignmnent problems

\

Al

Block pair represented by
each small square

Optimal block alignment score between the first i blocks of u and first j blocks of v: 0(n?)
) Oiyjock 18 the penalty

for inserting or
deleting an entire
block

.
Si.1j = Oblock
§;; = max

Sij-1 = Oblock >

Si1j0= By

.<

. 1s score of pair
of blocks in row 7
and column ;.

Four Russians Technique: speeds up the block alignment by using a lookup table Score to eliminate
the time of computing f3; ;.

Lookup table: stores the precomputed the scores 3; ; for all possible pair of sequences. Its size is
4t x 4%, if we set t = logn /4 then the size is n

each sequence J 2 3 g £S5)
. -4 113 ppRt]
has 7 nucleotides | 2 23 2 ¢ Lookup table “Score
2 2 2 2 2

AAAAAA ‘

AAAAAC

AAAAAG size is only n,

AAAAAT instead of

n/t)¥(n/t
AAAACA (r)y*(n't)
/

Si—1.5 — Oblock
Si,; = max Sij—1 — Oblock
8;—1,j—1 + Score(ith block of v, jth block of u)

Final time complexity: O(n?/logn)

Problem: In block alignment, we only care about the corners of the blocks. In LCS, we care about all
points on the edges of the blocks, because those are points that the path can traverse.

'fL &
\

trHe
oo lolld 5665666

block alignment has LCS alignment
block ali (nit*(nlt) = (n¥t2) has O(n2/t)
ock alignment longest common subsequence points of interest points of interest

20

=

we know we can calculate
< these scores
these scores
“_/
tx t block

Build a lookup table for all possible values of
the four variables:

1. all possible scores for the first row s.

2. all possible scores for the first column s.

3. substring of sequence u in this block (4! possibilities)

4. substring of sequence v in this block (4f possibilities)
For each quadruple we store the value of the
score for the last row and last column.
This will be a huge table, but we can eliminate
alignments scores that don’t make sense

Instead of recording humbers that correspond

to the index in the sequences u and v, we
can use binary to encode the differences
between the alignment scores

| 0 ‘ 1 ‘ 2 ‘ 2 ‘ 3 ‘ 4 | original encoding

|1‘1‘0‘0‘1‘1|binaryencoding

Alignment scores in LCS are monotonically
increasing, and adjacent elements can’t diffel
by more than 1

Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not
because 2 and 4 differ by more than 1 (and
sodo 5 and 8)

Therefore, we only need to store quadruples
whose scores are monotonically increasing
and differ by at most 1

2! possible scores (t = size of blocks)

4! possible strings

+ Lookup table size is (2t * 2t)*(4t * 4t) = 26t
Let t = (logn)/4;

+ Table size is: 206loan/4) = #6/4) = pB3/2)
Time = O([n2/t2]*logn)

O([n*{logn}¥3)*logn) = O(n%/logn)

21

22

5.Greedy Algorithms and Genome Rearrangements

Reversal p(i, j) reverses (flips) the elements fromitojinm
Gene order is represented by a permutation

T =Ty ____ T q W Tsaq s T3 iy s
1 i-1 717" i+l 17" jtl n 1=12345678
1]
P()) p(3,5) l
Ty Tiq /Tj ’T‘i—l ______ T Ty }rj+1 _____ Ty 12543678

Reversal Distance Problem: Given two permutations, find the shortest series of reversals that
transforms one into another.

e Input: Permutations and o

e Output: A series of reversals py, ..., p; transforming m into ¢ such that t is minimum

Sorting by Reversals Problem: Given a permutation, find a shortest series of reversals that
transforms it into the identity permutation (12 ... n)
e Input: Permutation
e Output: Aseries of reversals pq, ..., p¢ transforming i into the identity permutation such that
t is minimum.

Example :

7 =3421567 1098
43215 67 10938
4321567 8910
1234567 8910

Sod(z)=3

Pancake Flipping Problem: Given a stack of n pancakes, what is the minimum number of flips to
rearrange them into perfect stack?

e Input: Permutation

e Output: A series of prefix reversals py, ..., p¢ transforming m into the identity permutation

such that t is minimum
SimpleReversalSort(z)
1for i« Tton-17
2 j € position of element /in 7 (i.e., 7,=)

3 if j=/

4 T€& 7% pli,)

5 output 7

6 if 7is the identity permutation
7 return

Not optimal.

Approximation ratio: A(r) /OPT ()
e A(m) solution produced by algorithm A
e OPT(m) optimal solution of the problem
Minimization algorithm: f%i’flA(”)/OPT(”)

23

Adjacency: a pair of adjacent elements that are consecutive. Eg. (2,1) or (3,4)
Breakpoint: a pair of adjacent elements that are not consecutive. Eg. (6,2) or (1,3)
b(m): # of breakpoints
l ad_iaL‘fnmesl
05621347
t ot t

breakpoints

Extending Permutations: put my = 0 and ,,,; = n + 1 at the beginning and at the end.
n=1[9]3 4|7 8|26 5

Extending with 0 and 70

n=01|93 4|7 8|2|6 5|70

Each reversal eliminates at most 2 breakpoints.
This implies: reversal distance > #breakpoints / 2

Sorting by Reversals: A Better Greedy Algorithm
BreakPointReversalSort(n)
1 while 6(7) > 0

2 Among all possible reversals,
choose reversal p minimizing &7+ p)

3 x& mepli,)
output 7
return

v oA

Strip: an interval between two consecutive breakpoints in a permutation
e Decreasing strip: strip of elements in decreasing order (e.g. 6 5 and 3 2).
e Asingle element strip is considered decreasing with exception of the strips with 0 and n+1

019437825610

Theorem 1: If permutation contains at least one decreasing strip, then there exists a reversal p
which decreases the number of breakpoints.
Best reversal:

e Choose decreasing strip with the smallest element k in (k = 2 in this case)

e Find k — 1 in the permutation

e Reverse the segment between k and k — 1

- 010416 5[78[32[9 b(7)=5

|
. 0 318 7|5 6|49 b(7) = 4

If there is no decreasing strip, create one by reversing a increasing strip.
ImprovedBreakpointReversalSort(s)
1 while A=) > 0
2 if = has a decreasing strip
Among all possible reversals, choose reversal p

that minimizes Xz * p)

4 else

5 Choose a reversal pthat flips an increasing strip in =
6 xT€&€ Tep

7 output =

8 return

24

6.Molecular Evolution

Evolutionary Tree:
e |eaves represent existing species
e internal vertices represent ancestors
e root represents the oldest evolutionary ancestor

Tree distance between i and j d;;(T): length of a path between leaves i and j

Distance Matrix D n X n: each cell is the edit distance between a gene (DNA string) in species i and
species j, where the gene of interest is sequenced for all n species.

Given n species, Evolution of these genes is described by a tree that we don’t know.
We need an algorithm to construct a tree that best fits the distance matrix D;;

Fitting means: D;; = d;;(T)

Reconstructing a 3 Leaved Tree: given the 3x3 matrix

Fomme Dy mmm e
Observe:
d,. + d/f:Dﬁ d"c= (DU+ le_D_,'k)/Z
arly,
d/(+ dk(= D/k Y

dj. = (D; + Dy — Dy)/2

0;(+ e = D dkc = (Dki + DkJ' - D'})/Z

====>
Trees with >3 Leaves:
e 0(n?) equations
e 2n — 3 variables (edges)
e We have more constrains than variables => not always possible to solve forn > 3
e The matrix must be ADDITIVE

Distance Based Phylogeny Problem: Reconstruct an evolutionary tree from a distance matrix
e Input: n X n distance matrix D;;
e Output: weighted tree T with n leaves fitting D

If D is additive, this problem has a solution and there is a simple algorithm to solve it.

Using Neighboring Leaves to Construct the Tree
e Find neighboring leaves i and j with parent k
e Remove the rows and columns of i and j
e Add a new row and column corresponding to k, where the distance from k to any other leaf
m can be computed as: Dy,,, = (Dim + Dj, — Dl-j)/Z

/s
,f/ ' Compress i and j into
e k, iterate algorithm for
rest of tree
Neighbor Joining Algorithm: Finds a pair of leaves that are close to each other but far from other

leaves: implicitly finds a pair of neighboring leaves.
Works well for additive and other non-additive matrices.

25

6.1. Additive Phylogeny Algorithm

Degenerate Triples: 3 distinct elements 1 < i,j,k < n where D;; + Dj;. = Dy
i,], k lies on the evolutionary path from i to k (or is attached to this path by an edge of length 0).
If distance matrix D

e has a degenerate triple i, j, k then j can be “removed” from D thus reducing the size of the
problem.

e does not have a degenerate triple i,j, k then we “create” a degenerative triple in D by
shortening all hanging edges by the same amount § (so that all pair wise distances in the
matrix are reduced by 2§) until a degenerate triple is found.

e The attachment point for j can be recovered in the reverse transformations by saving D;; for
each collapsed leaf.

AL T D = —0
Al D 4 1o 9 1
B 40 8§ 7 4
C 10 8 o @
Dle 7 9 o
i=1
A B C
Ao 2 8
B 2 0 & - 4
C 8 6 0 i o H.
D 7 5 7 -t

Additive Phylogeny Algorithm
[TAETD @_? io_\——@" AdditivePhylogeny(D)
514 K O G if Dis a 2x 2 matrix
ol s 0 T = tree of a single edge of length D;
return 7
if Dis non-degenerate
L O é = trimming parameter of matrix D
HE forall 7 =/=j<n
Dy =Dy - 26

[else
Ot ot-@ 6=0
Find a triple , , kin Dsuch that O, + Dy, = Dy,
x =Dy
[Remove /% row and /” column from D
T = AdditivePhylogeny(D)
Add a new vertex v to 7 at distance x from /to k
; Add jback to T by creating an edge () of length 0
i Z ¢ for every leaf /in T
if distance from / to v in the tree = D,
output “matrix is not additive” '
return
Extend all “hanging” edges by length &
return 7

[AT
T B 7
[}

0

T
=
e

[~
»]
Y
-

=17 sl

= e el
!
.
q
:
S|

= 1ot
o

a o e

(8]
[
b
-
:I
5

The Four Point Condition: efficient additivity check.
Let1 <i,j,k, I < nbed4distinct leaves in a tree.
The condition is satisfied If 2 of the following sums
are the same and the third is smaller:

2 and 3 represent

the same 1 represents a
e D:.:+D number: the smaller
y Tk length of all number: the
e Dy +Dj edges + the , length of all
middle edge (itis # edges - the
e D+ Djk counted twice) & middle edge

An n X n matrix D is additive if and only if the four-point condition holds for every quartet 1 <

LLkl<n

26

6.2. NOT Additive distance matrix

Least Squares Distance Phylogeny Problem: If the distance matrix D is NOT additive, then we look
2
for a tree T that approximates D the best. NP-HARD. Zi,j(dij(T) — Dij)

UPGMA is a clustering algorithm that:
e computes the distance between clusters using average pairwise distance
e assigns a height to every vertex in the tree, effectively assuming the presence of a molecular
clock and dating every vertex.
e Problem: produces an ultrametric tree: the distance from the root to any leaf is the same.

Correct tree
UPGMA

4 N

1 1 4 2 3 ;
Initialization:
Assign each x; to its own cluster C;
Define one leaf per sequence, each at height 0

Iteration:
Find two clusters C;and C; such that dj; is min
LetC,=C, v C

Add a vertex connecting C,, C;and place it at height d;/2
Delete C;and C;

Termination:
When a single cluster remains

27

6.3. Weighted Small Parsimony Problem

Alignment Matrix vs. Distance Matrix
Sequence a gene of length m
nucleotides in n species to generate an...

n x m alignment matrix

CANNOT be

transformed back Transform
into alignment :
into...

matrix because

information was dist
lost on the forward nxn distance

transformation matrix

Character Based Tree Reconstruction: determine what character strings at internal nodes would
best explain the character strings for the n observed species

Use the nxm alignment matrix (n = # species, m = #characters) directly instead of using distance
matrix.

Characters may be nucleotides. Others may be the # of eyes or legs or the shape of a beak or a fin.

Parsimony score of a tree: sum of the lengths (weights) of the edges. Where the length of an edge
in the tree is the Hamming distance.

Assumes observed character differences resulted from the fewest possible mutations.

Seeks the tree that yields lowest possible parsimony score sum of cost of all mutations found in the

tree.
ACCC ACCC
1/ N\ 1/ Nl

ACCA ACCG ACCA ATCC

2/\> 2/\1
ATCG ATCC ATCG ACCG
Less More
Parsimonious Parsimonious
Score: 6 Score: 5

Small Parsimony Problem

e Input: Tree T with each leaf labeled by an m character string.

e Output: Labeling of internal vertices of the tree T minimizing the parsimony score.
Assume that every leaf is labeled by a single character, because the characters in the string are
independent.

Weighted Small Parsimony Problem: Input includes a k X k scoring matrix describing the cost of
transformation of each of k states into another one.
e Input: Tree T with each leaf labeled by elements of a k letter alphabet and a k X k scoring

matrix &;;
e Output: Labeling of internal vertices of the tree T minimizing the weighted parsimony score.
A Small Parsimony Scoring Matrix Weighted Parsimony Scoring Matrix
AT|G|C A AIT|G|C

alalalo
alalola

_|

9]
OO |>
alolala
oOlalala

-

O
OO >
Okl w o
AN O W
B~ IOIN| B
ok~ |k~ |©

C GT C Swall Parsimony Score: 5 C GT C Weighted Parsimony Score: 22

6.3.1. Sankoff’s Algorithm
The score at each vertex is based on scores of its children:s,(parent) = mjn{si(leftchild) +
l

8ic)+ mjin{sj(rightchild) + 68}

Begin at leaves:

e |f leaf has the character in question, score is 0
e Else, score is oo
— / - \\ iy
B T 3 ¥ 4 i ‘\\. A ¥ c
v/ o)
P P
/ 5 /
(VT =) (S =Te=]7] (3 T=]ee])
T 6 ¢ VS i R A T a ¢ VIS S A
5 |A T G C s(v) = min,; {s,(u) + S, } +
Al0O 3 4 9 i N+ O N)=min. {s(u)+ 35 }+
2l 3 & & min, {s(w) + 0, } 5,(v) i —;{-Sl(s“”)' 8.3
G4 2 0 4 ~ min, {s,(w) + 0, ,}
cl? « & 0 (ETEISTE] . S | 20 _
AT e) A CLEIEE] | 3| 5,|
A T a 2Al m
5,)=0 Al]O 0 0 SGY=0 &l e | o | e
+min. {s(w) + 5, } S
]{]() 5. A5 3 A W © 3 © | +9=9 ¢ : Tlw!l 3]
G © 4 o G) 4 0
(o] o0 9 0 (0 0 9 9
(Tl) CR R — O=I=l=) =T=T=
A T G ¢ A T G ¢ AT G C A T G ¢
s(v)=min, {s(u)+ S, } + L
$ LA 13;;: S ’(‘ i ’(,) O i Repeat for right subtree
AlO min {s(w) + o, ,}
T|s 0 2 ¢ 7 J ATaC
G|4 2 0 4 _
cly &« 4 o Ty .~
AT @G
Repeat for T, G, and C
3 4

LI IR (o[]0)
A TE S ATES T T
Repeat for root : o ;
Smallest score at root 1s minimum weighted
parsimony score In this case, 9 —
" so label with T
s AT c

T A

) %] 0]
AT G C A TAo ¢ AT G

0

29

EIEI TR
AT G C A TG C A TG C AT a

(eT=ToT]

c

After the scores at root vertex are computed the Sankoff algorithm moves down the tree and assign

each vertex with optimal character.
9 is derived from 7 + 2

So left child is T,
Andright childis T

6.3.2. Fitch’s Algorithm
Step 1) Assigns a set of letters to every vertex in the tree.
The father is:
e |f the two children’s sets of character overlap, it's the common set of them
e [f not, it's the union set of them.
Step 2) Assign labels to each vertex, traversing the tree from root to leaves
Assign root arbitrarily from its set of letters
For all other vertices:
e [fits parent’s label is in its set of letters, assign it its parent’s label
e Else, choose an arbitrary letter from its set as its label

(A C,G} A
— [AC & — A G
A} G {6} {G} {A} {C} {G} {6} A B @ B

0(nk)
The Sankoff algorithm gives the same set of optimal labels as the Fitch algorithm

6.3.3. Large Parsimony Problem

Input: An n X m matrix M describing n species, each represented by an m character string
Output: A tree T with n leaves labeled by the n rows of matrix M, and a labeling of the internal
vertices such that the parsimony score is minimized over all possible trees and all possible labelings
of internal vertices

Search space is huge, NP-complete, it’s solvable for n < 10
Some greedy techniques based on Tree:

e Nearest Neighbor Interchange

e Subtree Pruning and Recrafting

e Tree Bisection and Reconnection

Problems with Parsimony: reliance on one method provides incomplete picture
When different methods all give same result, more likely that the result is correct

30

7.DNA Assembly

It’s not possible to read the DNA in one-shot. But we read many fragments called reads.
DNA target sample

SHEAR & Assembly is a difficult problem due to
\ \ \ \ — Multiple solutions
/ / — Noise introduced by sequencing errors
\ \ \\ /\ — Algorithmic issues
\ /\ //___ = Time complexity
End Reiads / Mate\,- Pairs /-—/\\'_" * memory complexity
,-" "‘-_‘. ‘_/ \ Heuristics are used
30 - 800bp y srnTTTE, 1 Not all sequencing technologies produce ~ Overlap Layout Consensus
~10.000bp g\?fleer_eprilitiresr.ror models - De Bruin Graphs .
Different read lengths - Othe_rs (e‘g,_, G_reedy, String graph, Burrows-Wheeler Transform,
Quality Values for each sequenced base Maximum Likelihood Aprroaches, ...)

De-novo assembly: do everything from scratch
e Easier with long reads
e Needs good coverage (~10x min)
e Generally, produces fragmented assemblies (i.e., contigs)
e Only option when you don’t have a closely related (and correctly assembled) reference

genome

Comparative assembly: we have a “reference” (related) genome.
e Easier
e Basicidea:

o Take the reads and map them against the reference genome allowing for some small
mismatches (Alignment)

o Collect all overlapping reads, perform multiple sequence alignment, and produce
consensus sequence

e Short reads can map to several places

e Needs close reference genome

e Repeats are problematic

e Can be highly accurate even when reads have errors

Simplest scenario:
e Reads have no errors
e Reads are long enough that each of them appears exactly once in the genome
e Each read has the same orientation
o (SP

Common Superstring Problem (CSP): Given a set R of strings find a string S such that r is a substring
of SforallrinR

Trivial solution: concatenate all the strings in R.

Overlap Graph
e Eachreadis anode
e directed edge from u to v if the two reads have sufficient overlap

e Objective: Find a Hamiltonian Path (for linear genomes) or a Hamiltonian Circuit (for circular
genomes)

31

Hamiltonian Path Approach
e NP-hard
e produce multiple solutions
e Tends to produce fragmented assemblies

Hamiltonian Path identified m—)

Reads connected by overlaps
f——]

Consensus sequence
Identifying overlaps: Computing all-pairs overlap is computationally expensive, especially for NGS
datasets, which can have millions of short reads.

k-mer Graph (de Bruijn graph):

e \Vertices are k-mers (substrings of length k) that appear in some read

e edges are defined by overlap of k — 1 nucleotides

e number of nodes is 0 (4%)

e Does not require all-pairs overlap calculation

e |oss of information about reads can lead to incorrect assemblies

e produces fragmented assemblies

e assemblies are constructed by finding Eulerian paths
Eulerian path is a path going through each of the edge exactly once.
If the k-mer set comes from a sequence and each k-mer appears exactly once in the sequence, then
the de Bruijn graph has a Eulerian path.
Sequencing errors and repeats may lead to non Eulerian graphs or to graphs with multiple Eulerian
paths. To overcome this problem, we use pruning.

Errors on reads can cause “irregularities” to the
graph, mainly in two forms

Bubbles: errors inside a read involving k-1 k-mers
Dead ends: errors on the edge of the reads

Bl

Using de Bruijn Graphs:
e Given: set of k-mers from a DNA sequence
e Algorithm:
o Construct the de Bruijn graph
o Find an Eulerian path in the graph
o The path defines a sequence with the same set of k-mers as the original, but this may

not be the original DNA sequence
Seqgeunce: ACATAGGATAGAATAG

¥
‘ ACAT H CATA H ATAG TAGG }—" AGGA }—.‘ GGAT H GATA ‘
A
TAGA }—v‘ AGAA H GAAT H AATA ‘
|

Chimeric Sequence: ACATAGAATAGGATAG

Correct Sequence: ACATAGATAGAATAG
Velvet: tool to constrict the k-mer graph
e For each k-mer, create an hash value for it and its reverse complement
e In a Hash Table store the hash values and the list of all reads that contains either it or its
reverse complement
e Construct the de Bruijn graph
e Collapse linear paths into a single node
e Remove tips chains of nodes disconnected to one end
e Remove bubbles which are two paths starting and ending on the same node (only one is
hold)
e Finally find an Eulerian path
Main problem with Velvet is the huge amount of memory
Abyss distributed the hash tables to several computational nodes in order to “evenly” spread the
memory requirements.

Handling repeats:
e Repeat detection
o pre-assembly: find fragments that belong to repeats
= statistically (most existing assemblers
= repeat database (RepeatMasker)
o during assembly: detect "tangles" indicative of repeats
o post-assembly: find repetitive regions and potential misassemblies.
= Reputer, RepeatMasker
= "unhappy" mate-pairs (too close, too far, mis-oriented)
e Repeat resolution
o find DNA fragments belonging to the repeat
o determine correct tiling across the repeat

Evaluate assembly quality with Contig N50 is the length of the smallest contig in the set that
contains the fewest (largest) contigs whose combined length represents at least 50% of the
assembly

33

34

8.Pattern Matching

8.1. Genomic Repeats

Genomic Repeats: string that repeats with mutations AT TALCACCTAGTLT

l —mer Repeats
e Short repeats are easy to find (e.g., hashing)
e Long repeats are difficult to find
o Find exact repeats of short [-mers ([is usually 10 to 13)

o Use [-mer repeats to potentially extend into longer, maximal repeats
GCTTACAGATTCAGTCTTACAGATGGT

Extend these 4-mer matches:

GCTTACAGATTCAGTCITACAGATGGT

Maximal repeat: CTTACAGAT

Hashing DNA sequences:
e Each [—mer can be translated into a binary string (A, T, C, G can be represented as 00, 01,
10, 11)
e After assigning a unique integer per [-mer it is easy to get all start locations of each [-mer in
a genome
To find repeats in a genome:
e Forall I-mers in the genome, note the start position and the sequence
e Generate a hash table index for each unique [-mer sequence
e Ineachindex of the hash table, store all genome start locations of the [-mer which generated
that index

e Extend [-mer repeats to maximal repeats

35

8.2. Pattern Matching
Pattern Matching Problem: Find all occurrences of a pattern in a text
e Input: Patternp =p; ...ppand textt =t ...t
e Output: All positions 1 < i < (m —n + 1) such that the n-letter substring of t starting at
i matches p
Brute force: O0(nm)
Suffix trees: 0(m)

Keyword Tree: f(eA};M;:Zd ree: / «\>
e Stores a set of keywords in a rooted labeled tree . Apropos j L

e Each edge labeled with a letter from an alphabet - Banana 0 T A |

e Any two edges coming out of the same vertex have . Bandana ‘ [O pt
distinct labels - Orange (l | Ito.

e Every keyword stored can be spelled on a path from l |
root to some leaf l i

Multiple Pattern Matching Problem: Given a set of patterns and a text, find all occurrences of any
of patterns in text

e Input: k patterns pl, ..., p¥ andtextt = ¢t; ...t,,

e Output: All positions 1 < i < m where substring of t starting at i matchespjfor1 <j <k

Keyword Tree Approach t = R Ao S A Jprivet
e Build keyword tree in O(N) time; N is total length of all drive were proud to say that they were perfectly

normal thank you very much”

patterns

e With naive threading: O(N + nm)

e Aho Corasick algorithm: O(N + m)

To match patterns in a text using a keyword tree:

e Build keyword tree of patterns g

e Thread” the text through the keyword tree

e Threading is “complete” when we reach a leaf in the
keyword tree

e When threading is “complete,” we’ve found a patternin e
the text

root

36

Suffix Trees=Collapsed Keyword Trees

except edges that form paths are collapsed
Each edge is labeled with a substring of a text

e All internal edges have at least two outgoing TV \;'J //\(t(; ,7‘\(”(, ; /'<\(_,m, ‘
IS5 4l
e Leaves labeled by the index of the pattern. ¢/ \c v e ¢ ° poa
e Suffix trees of a text is constructed for all its ¢ b O O
suffixes YA G
e Builds in O(m) time for text of length m @)
To find any pattern of length n in a text: T
e Build suffix tree for text C
e Thread the pattern through the suffix tree G J
e Can find pattern in text in O(n) ¢
O(n + m + n,..) time for “Pattern Matching Problem” i Kagwintine B i

Generalized Suffix Tree: be used to represent all suffixes of a set of strings
Construction: Apply ordinary suffix tree construction to a concatenation of the strings: C =

S8 ..

$; is a unique end-marker for each §; => each leaf corresponds to a start position of C
These can be converted to pairs (i, j), where i identifies the string, and j is the position in
string S;

Total time is O(|C|)

Synthetic that span boundaries of original strings can be eliminated

Generalized suffix tree for S, = xabxa and S, = babxba
(after completing all phases for S,$):

Longest common substrings
For each node v of a suffix tree, define the string depth of v to be the length of the path label L(v)

of v

Finding maximal substrings common to strings S1 and S2

Build a generalized suffix tree for S1 and S2

Mark each internal node v by 1 (resp. 2) if the subtree below v contains a leaf for a suffix of
S1 (resp.S2)

Traverse the tree to find nodes marked by both 1 and 2, and choose any u of them with a
maximal string depth => L(u) is a maximal common substring

37

Frequent Common Substring

e Let S be aset of strings {5, ..., S}, of total length n. Define I (i), for eachi = 2, ..., k, as the
length of a maximal substring that is common to at least i strings of S

e We want to compute for each i = 2, ..., k the value I(i)

The (i) values and corresponding substrings for «S=
{sandollar, sandlot, handler, grand, pantry}:

i [(i) substring

4 sand (or and!)
3 and
3 and
2 an

i
2
3
4
5

0(kn)
e Compute a generalized suffix tree T for strings S;$; ... Si $x
e Compute how many distinct string identifiers occur below any internal node of T
e ((v) be the number of distinct string identifiers in the leaves of T below node v

Computing the C(v) numbers Compute the V(i) numbers

The number of leaves in any subtree of T can be))
computed in linear time, but it's more difficult to count Compute the I(i) values in terms of longest

occurrences of distinct string identifiers _ substrings that occur in exactly i strings; Let:
For this, compute for each internal node v a bit-vector b . . :
V(i)=max({0} U {Jw| | w occurs in exactly i

[1 ... K] where b[i] = 1 iff identifier of string i occurs in a !
leaf below v strings})

The vector for v is computed by ORing the vectors of the The V (I) values can be computed as follows
child nodes v, ..., viof v in O(lk) time

C(v) is now the number of 1-bits in the vector of v, and it « Initialize V(i) to zero foreachi=2,....k
is computed in time O(k) per node . .
Since the total number of (child) nodes is O(n), the total * Traverse tree T . At each internal node v having
time is O(kn) string-depth d and C(v) =i set V(i) := max{V/(i), d}
Compute the I(i) numbers :
P (1) Exact patterns discovery

Now obviously I(i) = max{V (j) | i <j < k}

Compute I(i) as follows: Problem: given an input string x (or a set)

= I(k) :=V (k); extract all the exact substrings that occur

. fori:=k-1 downto 2 do unusually often in x
I(i) := max{l(i + 1), V ()};

Example: {aba, abx bcda,bedb,bedc}:

Vi) | U I 3 2 3]
110)

Need to define a score to compare the actual frequency and the expected

3 (b
i frequency of all the candidates: measure of Surprise

2 (ab)

Surprising Exact Words

[T T

5
4
3
2

The problem of extracting in an efficient
way surprising words was succefully solved
for solid words by an algorithm called
Verbumculus (Apostolico et al., 00,02,04)

Partitions the O(n?) substrings into O(n) “classes of
monotone score”

- Computes expected frequencies, variances and
scores for the most surprising word in each class in
time O(n) overall.

For any word v without a score, there is a scored
extension vy which is at least equally surprising.

38

8.3. Approximate Pattern Matching
Usually, because of mutations, it makes much more biological sense to find approximate pattern
matches.

Heuristic Similarity Searches
e Find short exact matches, and use them as seeds for potential match extension
e “Filter” out positions with no extendable matches

FASTA:
e |dentify diagonals above a threshold length
e Diagonals in the dot matrix indicate exact substring matching.
e Extend diagonals and try to link them together, allowing for minimal mismatches/indels
e Linking diagonals reveals approximate matches over longer substrings

GATTCGCTTAGT
C = =
T * & & *
G |4 :
Al ;
F ‘\15\. * * K *
T N - -
G % -
C i
T * ® _1{:* *
T *w **Q -
Al AN
G |* * W,
T * ® & & \}
C - -
,ﬂ' k3 *
G |* * *

Approximate Pattern Matching Problem: Find all approximate occurrences of a pattern in a text.
Input: A patternp =p,...p,, textt=1t...t_,
and k, the maximum number of mismatches
Qutput: All positions 1 <ji<(m-n+ 1) such
thatt...t, ., and p,...p, have at most k
mismatches (i.e., Hamming distance between
t...t.,.,and p £ k)

Query Matching Problem: Find all substrings of the query that approximately match the text.
Input: Query q = g...q,,
textt= t,. .1,
n (length of matching substrings),
k (maximum number of mismatches)
Qutput: All pairs of positions (/, j) such that the

n-letter substring of q starting at i
approximately matches the

n-letter substring of t starting at j,
with at most k mismatches

Query Matching: Approximately matching strings share some perfectly matching substrings.
39

Search for perfectly matching substrings (easy).
Filtration in query matching:
If x,...x,, and y,...y,, match with at most k
mismatches, they must share an Ftuple that
is perfectly matched, with £=[n/(k + 1)
Break string of length n into k+1 parts, each
each of length [n/(k + 1)
* k mismatches can affect at most k of these
k+1 parts
+ At least one of these k+1 parts is perfectly
matched

Suppose k = 3. We would then have I=n/(k+1)=n/4.

Gli errori passo o meno apparire uniformemente in queste suddivisioni. Per esempio:

* Rk xR %%
1.1 I+1...21 20+1..31 | 3[+]1...n
1 2 k k+1

There are at most k mismatches in n, so at the very
least there must be one out of the k+1 [—tuples

without a mismatch

Cerco gli I-mer che appaiono in maniera esatta nel testo, filtro tutto il resto perché questi saranno i
punti di partenza di un possibile match che deve contenere un | mer esatto e poi cerchero di
estendere I'l-mer per trovare la soluzione (allineamento locale tra la query e il testo).

For each {-match we find, try to extend the
match further to see if it is substantial

uer

*
ot
.

Extend perfect
match of
length [

until we find an
approximate
match of
length n with k

text

mismatches

Local alignment is to slow: Quadratic local alignment is too slow while looking for similarities

between long strings.

BLAST

e Great improvement in speed, with a modest decrease in sensitivity

e Minimizes search space instead of exploring entire search space between two sequences

e Finds short exact matches (“seeds”), only explores locally around these “hits”

e Phase 1: Keyword search of all words of length w from the query of length n in database of

length m with score above threshold.

Phase 2: Local alignment extension for each found keyword

[]
e Extend result until longest match above threshold is achieved
e Running time 0 (nm)

Keyword lungo 3 con uno score se compare in un‘altra sequenza.

1l

Query: KRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKIFLENVIRD

GVK 18
GEK 16 .
CIK 16 Neighborhood
GGK 14 words
neighborhood GLK 13
score threshold T
_ - (T=13) GRK 11
Sogl|aper_ver_lﬂcar_echeuno CEK 11
score sia significativo. .
GDK 11
extension
Query: 22 VLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLK 60
+++DN +G + IR L G+K I+ L+ E+ RG+H+K
Sbjct: 226 IIKDNGRGFSGKQIRNLNYGIGLKVIADLV-EKHRGIIK 263

High-scoring Pair (HSP) = coppia che passa il
criterio dello score, viene estesa alla ricercar di un
match per aumentare lo score dell’allineamento.

40

Original BLAST
e Dictionary: All words of length w
e Alignment: Ungapped extensions until score falls below some statistical threshold
e Qutput: All local alignments with score > threshold

Original BLAST: Example Gapped BLAST : Example
ACGAAGTAA’m‘CAGTOriginalBLAST AccAAcTAAJEEcA T

w=4 < | exact keyword Z L
ExatCLkefy(V]Vg%gc ¢ search, THEN: o
rEnat ¢ d° o Extend with gaps .
d'x en Is with - around ends of -
Iagonta E Wi - exact match until =
mismatches 5 score < threshold [
U”g' scsoorg S o Output result -
under 50% -)
Outputresult 5 CTARGETCCACT ;
CTAACCTCC : GTTAGGTC-AGT -
GTTAGGTCC . e :

BLAST: Segment Score

BLAST uses scoring matrices (3) to improve
on efficiency of match detection

« Some proteins may have very different
amino acid sequences, but are still similar

For any two Fmers x,...x,and y,...y,:

« Segment pair: pair of Fmers, one from each
sequence

- Seagment score: X/_, 3(x; ¥,

BLAST: Locally Maximal Segment Pairs
e A segment pair is maximal if it has the best score over all segment pairs
e A segment pairis locally maximal if its score can’t be improved by extending or shortening
e Statistically significant locally maximal segment pairs are of biological interest.
e BLAST finds all locally maximal segment pairs with scores above some threshold. A
significantly high threshold will filter out some statistically insignificant matches

BLAST: matches short consecutive sequences (consecutive seed)
PatternHunter: matches short non consecutive sequences (spaced seed)
Is PH better: Higher hit probability. Lower expected number of random hits.

BLAT (BLAST Like Alignment Tool): Same idea as BLAST locate short sequence hits and extend.
Builds an index of the database and scans linearly through the query sequence, whereas BLAST
builds an index of the query sequence and then scans linearly through the database

Index is stored in RAM which is memory intensive, but results in faster searches

41

42

9.Alignment Free

Basic Axiom of Computational Biology: A high similarity among objects, measured by mathematical
functions, is strong indication of functional relatedness and/or common ancestry.

Basic Problems:
e Definition of good similarity/distance functions
e Development of efficient algorithms for their computation

Alignment-Free Methods: Similarity of two strings is assessed based only on the DICTIONARY of
substrings that appear in the strings, irrespective of their relative position.

Computational Approaches:
e Explicit Collection and Use of Word Statistics, either exact or approximate
¢ Implicit Collection and Use of Word Statistics

Explicit Collection of Word Statistics: Intuition: two strings are similar if they are composed of the
same basic building blocks.
Example: abracad , abraca d,

e Exact L tuple statistics:
Example for L=2 and Binary Alphabet

ababaab

Dictionary D =(aa, ab, ba,bb)

Char Vector=(1 ,3,2 ,0)
Once Characteristic vector is known, similarity and distance can be computed with dozens
of formulae.

e Approximate L tuple statistics:
Example for L=2, K=1 and Binary alphabet

ababaab
Dictionary D=(aa, ab,ba,bb)

Char Vector=(6 ,4,3,5)

Implicit Collection of Word Statistics: Similarity is captured by quantifying “how easy” it is to
describe x, given y. Kolmogorov Complexity
Example: abraabraabra | abra
e Kolmogorov Complexity K (x) of a string x is defined as the length of the shortest binary
program that produces x
e Conditional Kolmogorov Complexity K(x|y) represents the minimum amount of
information required to generate x by an effective computation when y is given as an input
to the computation
¢ Kolmogorov Complexity K (x, y) of a pair objects x and y is the length of the shortest binary
program that produces x and y and a way to tell them apart.

43

e Universal Similarity metric (USM): is a lower bound, of any computable distance/similarity
function. Based on Kolmogorov Complexity.
max -{ K(x|y*)LK(y| _*)}
max { K (x).K(p)|
K(x) can be approximated via data compression by using its relationship with Shannon
Information Theory.
Given compression algorithm C, K(x) can be approximated by |C(x)[, K(x, y) by |C(xy)| and
K(x|y™) by [C(xy) — C(x)|.
In practice, USM become a methodology that depends critically on the choice of compression
algorithm.
Given compression algorithm, three general formulas to approximate USM:

USM (x,y) =

max| C(xp) = C(x),C(x) = C(p)|

UChix, y)=
max L’[.\'}.L‘t_p}l—
where
C ot — it] €12)
NCD(x,y) =min| NCD,(x, y), NCD(y.x | NCD,(z,w) = Czw) J'n(lf;l t&l ‘#‘“)
maxl 4 8 w
ming Cla), C0m), Cla)+ Cf
CD(x,) = — i i,

Clx)+C(p)

Evaluation Methodology: How good is an alignment free similarity/distance functions:
e Data Sets with a trustworthy classification
e Statistical Tools to establish the intrinsic ability of the similarity/distance to discriminate
relatedness of strings ROC Analysis
e Statistical Tools to establish how well standard classification algorithms

Application 1: Comparison of Regulatory Sequences
Similar binding site contents are expected to drive similar expression patterns.
Identification of enhancing sequences that regulate the same cell type.
e Transcription factors binding sites often occur in clusters, also called cis regulatory modules
(CRMs)
e The position and orientation of binding sites in CRMs may vary, making an alignment often
impossible.

Alignment Free Statistics:
e D, statistic: is the correlation between the number of occurrences of k-mers appearing in
two sequences A and B. Can be biased by the stochastic noise in each sequence
Dy= Y AyBy
weLk
A,, is the number of times w appearsin A
e To standardize D, and to account for different k-mers distributions several statistics have
been introduced, e.g. D5 and D,

- JDQ — Z (3; -k 4+ |}j‘31;; } !ig"' \/i:ﬁ n !}E:

Ap =Aw—(n—k+1)*py weLk
44

e N, statistic: very similar to D, except it counts k-mers with at most one mismatch and
considers also the reverse complement.
Major Problems with Alignment Free Statistics:
e areinfluenced by the length / resolution k of k-mers.
e For CRMs, where multiple binding sites with different lengths are present, a fixed resolution
k will never capture the statistics of all binding sites
e The presence of repeats can alter the occurrence profile of some k mers.

Reads quality: generate tons of reads, filter out low quality reads, and work with the rest, assuming
it is by and large error free.

45

10. Metagenomics

Genetics: the study of individual genes and their roles in inheritance.
Genomics: it is an interdisciplinary field of science focusing on the structure, function, evolution,
mapping, and editing of genomes.

Metagenomics: is the study of genomic sequences obtained directly from an environment where
multiple microorganisms coexists.
Permette di sequenziare tutto il materiale genetico presente in un campione.

Environmental sample: multiple species S 3

F® ‘{\\

Reads Taxonomic Classification
How many species?

Sequencing Which species?

How much abundant?

MetaGenomic Reads Analysis:
o Reference Based (Supervised): Use reference database to assign reads to a given species

e Reference Free (Binning)

Kraken (Reference based)

Genomic Sequence Reference

] from NCBI RefSeq Taxonomic Tree
K-mer DB Creation
Input:
+ ALL genome sequences (NCBI RefSeq) . o
* Taxonomic Tree L ' I
Qutput: .
+ Kraken DataBase of annotated k-mers l k-mers eﬂmc,mn

and annotation
Classification o — Ej Kraken DB of
Input: o Input annotated k-mers
+ Metagenomic reads MetaGenomic Reads
* Kraken DB of annotated k-mers Reads
Output: - = (Classification
» Taxonomic classification of each reads = - (Taxonomic
alglclp

assignment)

46

Augmented Taxonomic Tree:

+ At every node in taxonomic tree is
associated a list of k-mers

root

Lowest Commen Ancestor (9,13) — ’ T ..)
—— e Family
+ Scan all k-mers of each genomic sequence
-\ in the dataset.
N \Genus i i
+ If a k-mer appears only in a given genome,
e o than it is associated to the leaf node
representing the species of that genome
Species

ST
i LY
f’ \\
i 5\
e ° * Ifa k-mer appears in more than one species

AGCCT AGCCT then its moved to the Lowest Common
1' Ancestor (LCA) of these nodes.

For all Bacterial and Archaeal complete genomes in *+ Every k-mers is associated only to one node
NCBI RefSeq, Kraken DB contains 5.8 billion k-mers, in the taxonomic tree.
about 65GB.

: . Q
+ Areadis decomposed into the il e i

list of its k-mers

* Each k-mer is searched in the
. K-mer to LCAmapging
augmented taxonomic tree, l{w&(ompuiedduinbase}

Classification

and in the corresponding tree and path

node a counter is] VH‘:Q‘ 0 o
incremented for every hit. G .'l-. ® & ll#
A 3

O @] Q0 [l:‘-
* The node’s counters are used

to classify the read by)
searching the highest f\:]:Enré::;:{ﬁ;ﬁht‘:ixﬁ?.ﬂngﬁn‘:ﬁ’
weighted path, from the root

to a leaf (RTL), in the tree

Taxonomy tree

MetaProb (Reference based): is a novel reference free assembly assisted tool for
reads binning.

metagenomic

e Phase 1: Reads are grouped based on overlap information between reads , similarly as in de

novo assembly. In each group we identify a set of independent reads
o The construction of the reads overlap graph can be prohibitive

We assume that two reads overlaps if they share at least m g mers q =30

O
o Reads are progressively merged into groups

o The k-mer counts of a group can be artificially inflated by overlaps
o

To avoid overcounting overlaps, for each group, we define a subset of independent

reads (in red) that do not overlap with each other.

e Phase 2: Extract the probabilistic sequence signature from each group based on k mers

counts. Groups of reads are clustered based on their sequence signatures
MetaProb can also estimate of the number of species.

MetaProb can deal with short and long reads in a novel probabilistic framework, by using

probabilistic sequence signatures.

Phase 1 Fhase 2
i
Reads of Groups with indipencet k-mers counls Probabilistic Kemeans Clustering
diflerent species selofreads inred | sequence signatures
- - B : — e .
T s TN = ~._ [Species A
d - /—F " .
o LD Ssss I Qa1 gy)

L Croation e {.wnlk mors 'y o — i -

Y ol grous _ of N — -
k% J/ basedon o imdpendert e — G e il
M 7 commen M — } rendsfor — 11| CIIT7111] M- - .)

- - g-mers § each group

47

e) e W

Bpeces B

Binning (reference free): is the process of sorting DNA sequences into group that might represent
an individual genome or genomes from closely related organisms.
Si analizzano i contig anzi che le read.

Sequencing
(Genomes =) [Short reads \
Q = »
e Ny — (/)]
- S e e s/ »
o
(F{eeovery) Qontigs 2 3
=2
e IS e <
< \ —_— Abundances
b =< Y & 4
Binning [.

48

Domande di ripasso

Motif Finding
e Cos'e un Alignment Matrix, Profile Matrix, consensous e score?
e Definizione di Motif Finding Problem e soluzione.
Definizione di Hamming distance tra stringhe.
Definizione di Total Distance tra stringa e DNA.
Definizione di Median String Problem e soluzione.
e Che relazione c'é tra Motif Finding Problem e Median String Problem?
e Che miglioramenti si possono appurare per ottenere una migliore complessita temporale?

Randomized Algorithm for Motif Finding

e Cos’é un algoritmo randomizzato?

e Cosa sono gli algoritmi Las Vegas e Monte Carlo?

e Come si trovano i P-Most Probable I-mer in a single sequence?
Come si trovano i P-Most Probable I-mer in many sequences?
Come funziona il Greedy Profile Motif Search?

e Come funziona il Gibbs Sampling?

e Come funziona il Random Projection?

Dynamic programming
e A cosaserve il similarity score? Cosa ha a che fare coN IL dp?
e (Cos'el'allinemento?
e Definizione del Longest Common Subsequence (LCS) e soluzione.
e Definizione di edit distance e sua ricorrenza
e Definizione di global Alignment e sua ricorrenza
e Cherelazione c'e tra LCS e Global Aligment?
e Definizione di Scoring Matrix, a cosa serve, quali sono le piu comuni.
e Che differenza c'e tra Global e Local Alignment?
e Definizione di Local Alignment e sua ricorrenza
e K-best local alignments
e Definizione di Alignment with Affine Gap Penalties
e Definizione di Multiple Alignment e sue possibili soluzioni.

D&C Algorithms
e Come funziona un algoritmo D&C?
e Cos'eil block alignement?
e Definizione del Block Alignment Problem e sua soluzione
e In che modo si puo velocizzare il block alignment?
e Qual & il problema principale del block alignment? E come si puo risolvere?

Genomic Rearrangements
e Cosa fa un’operazione di reversal?
e Definizione di Reversal Distance Problem.
e Definizione di Sorting by Reversals Problem.
e Definizione di Pancake Flipping Problem.

49

Cos'é un Adjacency e un Breakpoint?

Come funziona l'algoritmo Sorting by Reversals?

Cos'e uno strip?

Come funziona l'algoritmo ImprovedBreakpointReversalSort?

Molecolar Evolution

Come e fatto un Evolutionary Tree?
Definizione di Tree Distance e Distance Matrix
Di cosa si occupa la Molecolar Evolution?
Come si ricostruisce un albero? Qual'e il maggior problema?
Definizione di Distance Based Phylogeny Problem.
Come funziona il Neighbor Joining Algorithm?
Additive Phylogeny Algorithm
o Cosasono le Degenerate Triples? Come possono essere usate?
o Come funziona I'Additive Phylogeny Algorithm?
o Cosadice e a cosa serve la The Four Point Condition?
Che algoritmi possiamo usare in caso di NOT Additive distance matrix?
Parsimony problems
o Cosafa il Character Based Tree Reconstruction?
Come is calvola il Parsimony score of a tree e a cosa serve?
Definizione di Small Parsimony Problem
Definizione di Weighted Small Parsimony Problem
Come funziona il Sankoff’s Algorithm?
Come funziona il Fitch’s Algorithm?
o Definizione di Large Parsimony Problem e suoi algoritmi risolutivi.
Qual'e il problema del Parsimony? E come puo essere risolto?

O O O O O

DNA Assembly

What is the main problem when reading DNA?

What are the 2 ways to read DNA?

Definizione di Common Superstring Problem (CSP) e sua soluzione

Com'e fatto un overlap graph, a cosa serve? (Hamiltonian Path Approach)
Com'ée fatto un k-mer Graph (de Bruijn graph)? Come si usa?

Cos'e velvet? A cosa serve?

Come si gestiscono i repeats?

Come si valuta la qualita degli assebly?

Pattern Matching:

Come si usano i I-mer per trovare i repeats?
Come funziona I'hashing delle sequenze di DNA? E come viene usato per trovare repeats in
un genoma?
Pattern Matching
o Definizione di Pattern Matching Problem, e come si risolve?
o Cos'e un Keyword tree?
o Definizione di Multiple Pattern Matching Problem,e come si risolve?
o Cos'e un suffix tree? Come si usa per il Pattern Matching Problem?
o Cos'e un Generalized suffix tree? Come si costruisce?

50

o Comesirisolve il Longest common substring problem tra 2 stringhe?
o Definizione di Frequent Common Substring e come si risolve.

e Approximate Pattern Matching
o Approximate Pattern Matching: perché si usa?

Definizione di Approximate Pattern Matching Problem

Definizione di Query Matching Problem.

Come funziona la Filtration in query matching?

Come funziona BLAST? E le sue modifiche?

PatternHunter, BLAT

O O O O O

Alignment Free:
e (Qual'e il Basic Axiom of Computational Biology?
e Qualisono i problemi principali?
e Cosa fanno gli Alignment-Free Methods e quali sono Computational Approaches?
e Come si valutano le metodologie?
e (Qual'e una applicazzione dell'alignment free?
e Qualisono le Alignment Free Statistics? E quali problemi hanno?

Metagenomics:

e Cosa sono la genetica, la genomica e la metogenomica?
e Quali metodi esistono per analizzare le Reads?

51

